Proteomic analysis of cerebrospinal fluid in California sea lions (Zalophus californianus) with domoic acid toxicosis identifies proteins associated with neurodegeneration
Benjamin A. Neely
Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC, USA
Search for more papers by this authorFrances M. D. Gulland
The Marine Mammal Center, Sausalito, CA, USA
Search for more papers by this authorP. Darwin Bell
Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC, USA
Search for more papers by this authorMark Kindy
Marine Biomedicine and Environmental Sciences Center, Medical University of South Carolina, Charleston, SC, USA
Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
Department of Veterans’ Affairs, Research Service, Charleston, SC, USA
Search for more papers by this authorJohn M. Arthur
Department of Internal Medicine, Division of Nephrology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
Search for more papers by this authorCorresponding Author
Michael G. Janech
Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC, USA
Marine Biomedicine and Environmental Sciences Center, Medical University of South Carolina, Charleston, SC, USA
Correspondence: Dr. Michael G. Janech, Medical University of South Carolina, 96 Jonathan Lucas Street, 829 CSB - Nephrology, MSC 623, Charleston, SC 29425, USA
E-mail: [email protected]
Search for more papers by this authorBenjamin A. Neely
Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC, USA
Search for more papers by this authorFrances M. D. Gulland
The Marine Mammal Center, Sausalito, CA, USA
Search for more papers by this authorP. Darwin Bell
Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC, USA
Search for more papers by this authorMark Kindy
Marine Biomedicine and Environmental Sciences Center, Medical University of South Carolina, Charleston, SC, USA
Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
Department of Veterans’ Affairs, Research Service, Charleston, SC, USA
Search for more papers by this authorJohn M. Arthur
Department of Internal Medicine, Division of Nephrology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
Search for more papers by this authorCorresponding Author
Michael G. Janech
Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC, USA
Marine Biomedicine and Environmental Sciences Center, Medical University of South Carolina, Charleston, SC, USA
Correspondence: Dr. Michael G. Janech, Medical University of South Carolina, 96 Jonathan Lucas Street, 829 CSB - Nephrology, MSC 623, Charleston, SC 29425, USA
E-mail: [email protected]
Search for more papers by this authorAbstract
Proteomic studies including marine mammals are rare, largely due to the lack of fully sequenced genomes. This has hampered the application of these techniques toward biomarker discovery efforts for monitoring of health and disease in these animals. We conducted a pilot label-free LC-MS/MS study to profile and compare the cerebrospinal fluid from California sea lions with domoic acid toxicosis (DAT) and without DAT. Across 11 samples, a total of 206 proteins were identified (FDR<0.1) using a composite mammalian database. Several peptide identifications were validated using stable isotope labeled peptides. Comparison of spectral counts revealed seven proteins that were elevated in the cerebrospinal fluid from sea lions with DAT: complement C3, complement factor B, dickkopf-3, malate dehydrogenase 1, neuron cell adhesion molecule 1, gelsolin, and neuronal cell adhesion molecule. Immunoblot analysis found reelin to be depressed in the cerebrospinal fluid from California sea lions with DAT. Mice administered domoic acid also had lower hippocampal reelin protein levels suggesting that domoic acid depresses reelin similar to kainic acid. In summary, proteomic analysis of cerebrospinal fluid in marine mammals is a useful tool to characterize the underlying molecular pathology of neurodegenerative disease. All MS data have been deposited in the ProteomeXchange with identifier PXD002105 (http://proteomecentral.proteomexchange.org/dataset/PXD002105).
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
pmic12146-sup-0001-supinfo.zip3.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
5 References
- 1Scholin, C. A., Gulland, F., Doucette, G. J., Benson, S. et al., Mortality of sea lions along the central California coast linked to a toxic diatom bloom. Nature 2000, 403, 80–84.
- 2Lefebvre, K. A., Powell, C. L., Busman, M., Doucette, G. J. et al., Detection of domoic acid in northern anchovies and California sea lions associated with an unusual mortality event. Natural Toxins 1999, 7, 85–92.
10.1002/(SICI)1522-7189(199905/06)7:3<85::AID-NT39>3.0.CO;2-Q CASPubMedWeb of Science®Google Scholar
- 3de la Riva, G. T., Johnson, C. K., Gulland, F. M., Langlois, G. W. et al., Association of an unusual marine mammal mortality event with Pseudo-nitzschia spp. blooms along the southern California coastline. J. Wildl. Dis. 2009, 45, 109–121.
- 4Hampson, D. R., Manalo, J. L., The activation of glutamate receptors by kainic acid and domoic acid. Natural Toxins 1998, 6, 153–158.
- 5Larm, J. A., Beart, P. M., Cheung, N. S., Neurotoxin domoic acid produces cytotoxicity via kainate- and AMPA-sensitive receptors in cultured cortical neurones. Neurochem. Int. 1997, 31, 677–682.
- 6Buckmaster, P. S., Wen, X., Toyoda, I., Gulland, F. M., Van Bonn, W., Hippocampal neuropathology of domoic acid-induced epilepsy in California sea lions (Zalophus californianus). J. Comp. Neurol. 2014, 522, 1691–1706.
- 7Ramsdell, J. S., Gulland, F. M., Domoic acid epileptic disease. Marine Drugs 2014, 12, 1185–1207.
- 8Goldstein, T., Mazet, J. A., Zabka, T. S., Langlois, G. et al., Novel symptomatology and changing epidemiology of domoic acid toxicosis in California sea lions (Zalophus californianus): an increasing risk to marine mammal health. Proc. Biol. Sci. 2008, 275, 267–276.
- 9Truelove, J., Iverson, F., Serum domoic acid clearance and clinical observations in the cynomolgus monkey and Sprague-Dawley rat following a single i.v. dose. Bull. Environ. Contam. Toxicol. 1994, 52, 479–486.
- 10Funk, J. A., Janech, M. G., Dillon, J. C., Bissler, J. J. et al., Characterization of renal toxicity in mice administered the marine biotoxin domoic acid. J. Am. Soc. Nephrol. 2014, 25, 1187–1197.
- 11Neely, B. A., Soper, J. L., Greig, D. J., Carlin, K. P. et al., Serum profiling by MALDI-TOF mass spectrometry as a diagnostic tool for domoic acid toxicosis in California sea lions. Proteome Sci. 2012, 10, 18.
- 12Neely, B. A., Ferrante, J. A., Chaves, J. M., Soper, J. L. et al., Proteomic analysis of plasma from California sea lions (Zalophus californianus) reveals apolipoprotein E as a candidate biomarker of chronic domoic acid toxicosis. PloS One 2015, 10, e0123295.
- 13Lefebvre, K. A., Frame, E. R., Gulland, F., Hansen, J. D. et al., A novel antibody-based biomarker for chronic algal toxin exposure and sub-acute neurotoxicity. PLoS One 2012, 7, e36213.
- 14Gulland, F. M., Hall, A. J., Greig, D. J., Frame, E. R. et al., Evaluation of circulating eosinophil count and adrenal gland function in California sea lions naturally exposed to domoic acid. J. Am. Vet. Med. Assoc. 2012, 241, 943–949.
- 15Mancia, A., Ryan, J. C., Chapman, R. W., Wu, Q. et al., Health status, infection and disease in California sea lions (Zalophus californianus) studied using a canine microarray platform and machine-learning approaches. Dev. Comp. Immunol. 2012, 36, 629–637.
- 16Cook, P., Reichmuth, C., Gulland, F., Rapid behavioural diagnosis of domoic acid toxicosis in California sea lions. Biol. Lett. 2011, 7, 536–538.
- 17Zabka, T. S., Goldstein, T., Cross, C., Mueller, R. W. et al., Characterization of a degenerative cardiomyopathy associated with domoic acid toxicity in California sea lions (Zalophus californianus). Vet. Pathol. 2009, 46, 105–119.
- 18Kirkley, K. S., Madl, J. E., Duncan, C., Gulland, F. M., Tjalkens, R. B., Domoic acid-induced seizures in California sea lions (Zalophus californianus) are associated with neuroinflammatory brain injury. Aquat. Toxicol. 2014, 156, 259–268.
- 19Montie, E. W., Wheeler, E., Pussini, N., Battey, T. W. et al., Magnetic resonance imaging quality and volumes of brain structures from live and postmortem imaging of California sea lions with clinical signs of domoic acid toxicosis. Dis. Aquat. Organ 2010, 91, 243–256.
- 20Liddelow, S. A., Development of the choroid plexus and blood-CSF barrier. Front. Neurosci. 2015, 9, 32.
- 21Lukasiuk, K., Becker, A. J., Molecular biomarkers of epileptogenesis. Neurotherapeutics 2014, 11, 319–323.
- 22Shahim, P., Darin, N., Andreasson, U., Blennow, K. et al., Cerebrospinal fluid brain injury biomarkers in children: a multicenter study. Pediatr. Neurol. 2013, 49, 31–39 e32.
- 23Li, Y., Wang, Z., Zhang, B., Zhe, X. et al., Cerebrospinal fluid ubiquitin C-terminal hydrolase as a novel marker of neuronal damage after epileptic seizure. Epilepsy Res. 2013, 103, 205–210.
- 24Wang, W., Wang, L., Luo, J., Xi, Z. et al., Role of a neural cell adhesion molecule found in cerebrospinal fluid as a potential biomarker for epilepsy. Neurochem. Res. 2012, 37, 819–825.
- 25Kroksveen, A. C., Guldbrandsen, A., Vedeler, C., Myhr, K. M. et al., Cerebrospinal fluid proteome comparison between multiple sclerosis patients and controls. Acta Neurol. Scand. Suppl. 2012, 195, 90–96.
- 26Glushakova, O. Y., Jeromin, A., Martinez, J., Johnson, D. et al., Cerebrospinal fluid protein biomarker panel for assessment of neurotoxicity induced by kainic acid in rats. Toxicol. Sci. 2012, 130, 158–167.
- 27Ray, S., Reddy, P. J., Jain, R., Gollapalli, K. et al., Proteomic technologies for the identification of disease biomarkers in serum: advances and challenges ahead. Proteomics 2011, 11, 2139–2161.
- 28Suk, K., Combined analysis of the glia secretome and the CSF proteome: neuroinflammation and novel biomarkers. Expert Rev. Proteomics 2010, 7, 263–274.
- 29Foote, A. D., Liu, Y., Thomas, G. W., Vinar, T. et al., Convergent evolution of the genomes of marine mammals. Nat. Genet. 2015, 47, 272–275.
- 30Huo, T., Zhang, Y., Lin, J., Functional annotation from the genome sequence of the giant panda. Protein Cell 2012, 3, 602–608.
- 31Lindblad-Toh, K., Wade, C. M., Mikkelsen, T. S., Karlsson, E. K. et al., Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature 2005, 438, 803–819.
- 32Robinson, W., Trevail, R., Behr, S., Jose-Lopez, R., Vetenirary Times, Veterinary Business Development 2013, pp. 12–14.
- 33Vizcaino, J. A., Deutsch, E. W., Wang, R., Csordas, A. et al., ProteomeXchange provides globally coordinated proteomics data submission and dissemination. Nat. Biotechnol. 2014, 32, 223–226.
- 34Smyth, G. K., Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol. 2004, 3, Article3.
- 35Neely, B. A., Carlin, K. P., Arthur, J. M., McFee, W. E., Janech, M. G., Ratiometric measurements of adiponectin by mass spectrometry in Bottlenose dolphins (Tursiops truncatus) with iron overload reveal an association with insulin resistance and glucagon. Front. Endocrinol. 2013, 4, 132.
- 36Perrin, R. J., Payton, J. E., Malone, J. P., Gilmore, P. et al., Quantitative label-free proteomics for discovery of biomarkers in cerebrospinal fluid: assessment of technical and inter-individual variation. PLoS One 2013, 8, e64314.
- 37Smith, J. S., Angel, T. E., Chavkin, C., Orton, D. J. et al., Characterization of individual mouse cerebrospinal fluid proteomes. Proteomics 2014, 14, 1102–1106.
- 38Lardinois, O., Kirby, P. J., Morgan, D. L., Sills, R. C. et al., Mass spectrometric analysis of rat cerebrospinal fluid proteins following exposure to the neurotoxicant carbonyl sulfide. Rapid Commun. Mass Spectrom. 2014, 28, 2531–2538.
- 39Jaako, K., Aonurm-Helm, A., Kalda, A., Anier, K. et al., Repeated citalopram administration counteracts kainic acid-induced spreading of PSA-NCAM-immunoreactive cells and loss of reelin in the adult mouse hippocampus. Eur. J. Pharmacol. 2011, 666, 61–71.
- 40Cunningham, R., Jany, P., Messing, A., Li, L., Protein changes in immunodepleted cerebrospinal fluid from a transgenic mouse model of Alexander disease detected using mass spectrometry. J. Prot. Res. 2013, 12, 719–728.
- 41Yu, W., Chen, D., Wang, Z., Zhou, C. et al., Time-dependent decrease of clusterin as a potential cerebrospinal fluid biomarker for drug-resistant epilepsy. J. Mol. Neurosci. 2014, 54, 1–9.
- 42Shafie, I. N., McLaughlin, M., Burchmore, R., Lim, M. A. et al., The chaperone protein clusterin may serve as a cerebrospinal fluid biomarker for chronic spinal cord disorders in the dog. Cell Stress Chaperones 2014, 19, 311–320.
- 43Wang, L., Pan, Y., Chen, D., Xiao, Z. et al., Tetranectin is a potential biomarker in cerebrospinal fluid and serum of patients with epilepsy. Clin. Chim. Acta 2010, 411, 581–583.
- 44Peng, X., Zhang, X., Wang, L., Zhu, Q. et al., Gelsolin in cerebrospinal fluid as a potential biomarker of epilepsy. Neurochem. Res. 2011, 36, 2250–2258.
- 45Murphy, N., Yamamoto, A., Henshall, D. C., Detection of 14-3-3zeta in cerebrospinal fluid following experimentally evoked seizures. Biomarkers 2008, 13, 377–384.
- 46Xu, Y., Zeng, K., Han, Y., Wang, L. et al., Altered expression of CX3CL1 in patients with epilepsy and in a rat model. Am. J. Pathol. 2012, 180, 1950–1962.
- 47Zemlan, F. P., Mulchahey, J. J., Gudelsky, G. A., Quantification and localization of kainic acid-induced neurotoxicity employing a new biomarker of cell death: cleaved microtubule-associated protein-tau (C-tau). Neurosciences 2003, 121, 399–409.
- 48Pritt, M. L., Hall, D. G., Jordan, W. H., Ballard, D. W. et al., Initial biological qualification of SBDP-145 as a biomarker of compound-induced neurodegeneration in the rat. Toxicol. Sci. 2014, 141, 398–408.
- 49Lefebvre, K. A., Tilton, S. C., Bammler, T. K., Beyer, R. P. et al., Gene expression profiles in zebrafish brain after acute exposure to domoic acid at symptomatic and asymptomatic doses. Toxicol. Sci. 2009, 107, 65–77.
- 50Hiolski, E. M., Kendrick, P. S., Frame, E. R., Myers, M. S. et al., Chronic low-level domoic acid exposure alters gene transcription and impairs mitochondrial function in the CNS. Aquat. Toxicol. 2014, 155, 151–159.
- 51Ryan, J. C., Morey, J. S., Ramsdell, J. S., Van Dolah, F. M., Acute phase gene expression in mice exposed to the marine neurotoxin domoic acid. Neurosciences 2005, 136, 1121–1132.
- 52Rocha-Ferreira, E., Hristova, M., Antimicrobial peptides and complement in neonatal hypoxia-ischemia induced brain damage. Front. Immunol. 2015, 6, 56.
- 53Nomaru, H., Sakumi, K., Katogi, A., Ohnishi, Y. N. et al., Fosb gene products contribute to excitotoxic microglial activation by regulating the expression of complement C5a receptors in microglia. Glia 2014, 62, 1284–1298.
- 54Benson, M. J., Thomas, N. K., Talwar, S., Hodson, M. P. et al., A novel anticonvulsant mechanism via inhibition of complement receptor C5ar1 in murine epilepsy models. Neurobiol. Dis. 2015, 76, 87–97.
- 55van Beek, J., Nicole, O., Ali, C., Ischenko, A. et al., Complement anaphylatoxin C3a is selectively protective against NMDA-induced neuronal cell death. Neuroreport 2001, 12, 289–293.
- 56Rozovsky, I., Morgan, T. E., Willoughby, D. A., Dugichi-Djordjevich, M. M. et al., Selective expression of clusterin (SGP-2) and complement C1qB and C4 during responses to neurotoxins in vivo and in vitro. Neurosciences 1994, 62, 741–758.
- 57Finehout, E. J., Franck, Z., Lee, K. H., Complement protein isoforms in CSF as possible biomarkers for neurodegenerative disease. Dis. Markers 2005, 21, 93–101.
- 58Selle, H., Lamerz, J., Buerger, K., Dessauer, A. et al., Identification of novel biomarker candidates by differential peptidomics analysis of cerebrospinal fluid in Alzheimer's disease. Comb. Chem. High Throughput Screen 2005, 8, 801–806.
- 59Ingram, G., Hakobyan, S., Hirst, C. L., Harris, C. L. et al., Complement regulator factor H as a serum biomarker of multiple sclerosis disease state. Brain 2010, 133, 1602–1611.
- 60Aronica, E., Boer, K., van Vliet, E. A., Redeker, S. et al., Complement activation in experimental and human temporal lobe epilepsy. Neurobiol. Dis. 2007, 26, 497–511.
- 61Kharatishvili, I., Shan, Z. Y., She, D. T., Foong, S. et al., MRI changes and complement activation correlate with epileptogenicity in a mouse model of temporal lobe epilepsy. Brain Struct. Funct. 2014, 219, 683–706.
- 62Nakamura, R. E., Hackam, A. S., Analysis of Dickkopf3 interactions with Wnt signaling receptors. Growth Factors 2010, 28, 232–242.
- 63Nakamura, R. E., Hunter, D. D., Yi, H., Brunken, W. J., Hackam, A. S., Identification of two novel activities of the Wnt signaling regulator Dickkopf 3 and characterization of its expression in the mouse retina. BMC Cell Biol. 2007, 8, 52.
- 64Veeck, J., Dahl, E., Targeting the Wnt pathway in cancer: the emerging role of Dickkopf-3. Biochim. Biophys. Acta 2012, 1825, 18–28.
- 65Zenzmaier, C., Marksteiner, J., Kiefer, A., Berger, P., Humpel, C., Dkk-3 is elevated in CSF and plasma of Alzheimer's disease patients. J. Neurochem. 2009, 110, 653–661.
- 66Tanaka, J., Sobue, K., Localization and characterization of gelsolin in nervous tissues: gelsolin is specifically enriched in myelin-forming cells. J. Neurosci. 1994, 14, 1038–1052.
- 67Furukawa, K., Fu, W., Li, Y., Witke, W. et al., The actin-severing protein gelsolin modulates calcium channel and NMDA receptor activities and vulnerability to excitotoxicity in hippocampal neurons. J. Neurosci. 1997, 17, 8178–8186.
- 68Le, H. T., Hirko, A. C., Thinschmidt, J. S., Grant, M. et al., The protective effects of plasma gelsolin on stroke outcome in rats. Exp. Transl. Stroke Med. 2011, 3, 13.
- 69Zhang, Q. H., Chen, Q., Kang, J. R., Liu, C. et al., Treatment with gelsolin reduces brain inflammation and apoptotic signaling in mice following thermal injury. J. Neuroinflammation 2011, 8, 118.
- 70Liu, H., Liu, J., Liang, S., Xiong, H., Plasma gelsolin protects HIV-1 gp120-Induced neuronal injury via voltage-gated K channel Kv2.1. Mol. Cell Neurosci. 2013, 57, 73–82.
- 71Vargas, T., Antequera, D., Ugalde, C., Spuch, C., Carro, E., Gelsolin restores A beta-induced alterations in choroid plexus epithelium. J. Biomed. Biotechnol. 2010, 2010, 805405.
- 72Pottiez, G., Haverland, N., Ciborowski, P., Mass spectrometric characterization of gelsolin isoforms. Rapid Commun. Mass Spectrom. 2010, 24, 2620–2624.
- 73Vranyac-Tramoundanas, A., Harrison, J. C., Clarkson, A. N., Kapoor, M. et al., Domoic acid impairment of cardiac energetics. Toxicol. Sci. 2008, 105, 395–407.
- 74Acharya, M. M., Katyare, S. S., Structural and functional alterations in mitochondrial membrane in picrotoxin-induced epileptic rat brain. Exp. Neurol. 2005, 192, 79–88.
- 75Sakurai, T., The role of NrCAM in neural development and disorders–beyond a simple glue in the brain. Mol. Cell. Neurosci. 2012, 49, 351–363.
- 76Sakurai, T., Lustig, M., Nativ, M., Hemperly, J. J. et al., Induction of neurite outgrowth through contactin and Nr-CAM by extracellular regions of glial receptor tyrosine phosphatase beta. J. Cell Biol. 1997, 136, 907–918.
- 77Ishiguro, H., Hall, F. S., Horiuchi, Y., Sakurai, T. et al., NrCAM-regulating neural systems and addiction-related behaviors. Addict. Biol. 2014, 19, 343–353.
- 78Perrin, R. J., Craig-Schapiro, R., Malone, J. P., Shah, A. R. et al., Identification and validation of novel cerebrospinal fluid biomarkers for staging early Alzheimer's disease. PLoS One 2011, 6, e16032.
- 79Muller, M., Claassen, J. A., Bea Kuiperij, H., Verbeek, M. M., Cerebrospinal fluid NrCAM is not a suitable biomarker to discriminate between dementia disorders: a pilot study. J. Alzheimers Dis. 2015, 46, 605–609.
- 80Schwarz, M., Jandova, K., Struk, I., Maresova, D. et al., Low dose domoic acid influences spontaneous behavior in adult rats. Physiol. Res. 2014, 63, 369–376.
- 81Dallerac, G., Rampon, C., Doyere, V., NCAM function in the adult brain: lessons from mimetic peptides and therapeutic potential. Neurochem. Res. 2013, 38, 1163–1173.
- 82Krog, L., Olsen, M., Dalseg, A. M., Roth, J., Bock, E., Characterization of soluble neural cell adhesion molecule in rat brain, CSF, and plasma. J. Neurochem. 1992, 59, 838–847.
- 83Hubschmann, M. V., Skladchikova, G., Bock, E., Berezin, V., Neural cell adhesion molecule function is regulated by metalloproteinase-mediated ectodomain release. J. Neurosci. Res. 2005, 80, 826–837.
- 84van Kammen, D. P., Poltorak, M., Kelley, M. E., Yao, J. K. et al., Further studies of elevated cerebrospinal fluid neuronal cell adhesion molecule in schizophrenia. Biol. Psychiatry 1998, 43, 680–686.
- 85Vawter, M. P., Usen, N., Thatcher, L., Ladenheim, B. et al., Characterization of human cleaved N-CAM and association with schizophrenia. Exp. Neurol. 2001, 172, 29–46.
- 86Yin, G. N., Lee, H. W., Cho, J. Y., Suk, K., Neuronal pentraxin receptor in cerebrospinal fluid as a potential biomarker for neurodegenerative diseases. Brain Res. 2009, 1265, 158–170.
- 87Gnanapavan, S., Grant, D., Illes-Toth, E., Lakdawala, N. et al., Neural cell adhesion molecule–description of a CSF ELISA method and evidence of reduced levels in selected neurological disorders. J. Neuroimmunol. 2010, 225, 118–122.
- 88Mikkonen, M., Soininen, H., Kalvianen, R., Tapiola, T. et al., Remodeling of neuronal circuitries in human temporal lobe epilepsy: increased expression of highly polysialylated neural cell adhesion molecule in the hippocampus and the entorhinal cortex. Ann. Neurol. 1998, 44, 923–934.
- 89Mathern, G. W., Leiphart, J. L., De Vera, A., Adelson, P. D. et al., Seizures decrease postnatal neurogenesis and granule cell development in the human fascia dentata. Epilepsia 2002, 43 Suppl 5, 68–73.
10.1046/j.1528-1157.43.s.5.28.x Google Scholar
- 90Rossi, A. R., Angelo, M. F., Villarreal, A., Lukin, J., Ramos, A. J., Gabapentin administration reduces reactive gliosis and neurodegeneration after pilocarpine-induced status epilepticus. PLoS One 2013, 8, e78516.
- 91Duveau, V., Fritschy, J. M., PSA-NCAM-dependent GDNF signaling limits neurodegeneration and epileptogenesis in temporal lobe epilepsy. Eur. J. Neurosci. 2010, 32, 89–98.
- 92Pekcec, A., Muhlenhoff, M., Gerardy-Schahn, R., Potschka, H., Impact of the PSA-NCAM system on pathophysiology in a chronic rodent model of temporal lobe epilepsy. Neurobiol. Dis. 2007, 27, 54–66.
- 93Gong, C., Wang, T. W., Huang, H. S., Parent, J. M., Reelin regulates neuronal progenitor migration in intact and epileptic hippocampus. J. Neurosci. 2007, 27, 1803–1811.
- 94Fatemi, S. H., Reelin glycoprotein in autism and schizophrenia. Int. Rev. Neurobiol. 2005, 71, 179–187.
- 95Matricon, J., Bellon, A., Frieling, H., Kebir, O. et al., Neuropathological and Reelin deficiencies in the hippocampal formation of rats exposed to MAM; differences and similarities with schizophrenia. PLoS One 2010, 5, e10291.
- 96Herring, A., Donath, A., Steiner, K. M., Widera, M. P. et al., Reelin depletion is an early phenomenon of Alzheimer's pathology. J. Alzheimers Dis. 2012, 30, 963–979.
- 97Duveau, V., Madhusudan, A., Caleo, M., Knuesel, I., Fritschy, J. M., Impaired reelin processing and secretion by Cajal-Retzius cells contributes to granule cell dispersion in a mouse model of temporal lobe epilepsy. Hippocampus 2011, 21, 935–944.
- 98Muller, M. C., Osswald, M., Tinnes, S., Haussler, U. et al., Exogenous reelin prevents granule cell dispersion in experimental epilepsy. Exp. Neurol. 2009, 216, 390–397.
- 99Haas, C. A., Frotscher, M., Reelin deficiency causes granule cell dispersion in epilepsy. Exp. Brain Res. 2010, 200, 141–149.
- 100Eastwood, S. L., Harrison, P. J., Interstitial white matter neurons express less reelin and are abnormally distributed in schizophrenia: towards an integration of molecular and morphologic aspects of the neurodevelopmental hypothesis. Mol. Psychiatry 2003, 8, 769, 821–731.
- 101Schellinck, H. M., Arnold, A., Rafuse, V. F., Neural cell adhesion molecule (NCAM) null mice do not show a deficit in odour discrimination learning. Behav. Brain Res. 2004, 152, 327–334.
- 102Seki, T., Expression patterns of immature neuronal markers PSA-NCAM, CRMP-4 and NeuroD in the hippocampus of young adult and aged rodents. J. Neurosci. Res. 2002, 70, 327–334.
- 103Sulkowski, G. M., Li, G. H., Sajdel-Sulkowska, E. M., Environmental impacts on the developing CNS: CD15, NCAM-L1, and GFAP expression in rat neonates exposed to hypergravity. Adv. Space Res. 2004, 33, 1423–1430.
- 104Vizcaíno, J. A., Côté, R. G., Csordas, A., Dianes, J. A. et al., The PRoteomics IDEntifications (PRIDE) database and associated tools: status in 2013. Nucleic Acids Res. 2013, 41, D1063–D1069.