Technetium-99m radiochemistry for pharmaceutical applications
Corresponding Author
Dionysia Papagiannopoulou
Department of Pharmaceutical Chemistry, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
Correspondence
Dionysia Papagiannopoulou, Department of Pharmaceutical Chemistry, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Dionysia Papagiannopoulou
Department of Pharmaceutical Chemistry, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
Correspondence
Dionysia Papagiannopoulou, Department of Pharmaceutical Chemistry, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece.
Email: [email protected]
Search for more papers by this authorAbstract
Technetium-99m (99mTc) is a widely used radionuclide, and the development of 99mTc imaging agents continues to be in demand. This overview discusses basic principles of 99mTc radiopharmaceutical preparation and design and focuses on the 99mTc radiochemistry relevant to its pharmaceutical applications. The 99mTc complexes are described based on the most typical examples in each category, keeping up with the state-of-the-art in the field. In addition, the main current strategies to develop targeted 99mTc radiopharmaceuticals are summarized.
REFERENCES
- 1Jurisson SS, Lydon JD. Potential technetium small molecule radiopharmaceuticals. Chem Rev. 1999; 99(9): 2205-2218.
- 2Saha GB. In: GB Saha, ed. Fundamendals of Nuclear Pharmacy. 5th ed. New York, NY: Springer-Verlag; 2003.
- 3 I Zolle (Ed). Technetium-99m Pharmaceuticals. Berlin Heidelberg: Springer; 2007.
10.1007/978-3-540-33990-8 Google Scholar
- 4Braband H, Tooyama Y, Fox T, et al. Fac-[TcO3(tacn)]+: a versatile precursor for the labelling of pharmacophores, amino acids and carbohydrates through a new ligand-centred labelling strategy. Chem A Eur J. 2011; 17: 12,967-12,974.
- 5Braband H, Imstepf S, Benz M, Spingler B, Alberto R. Combining bifunctional chelator with (3 + 2)-cycloaddition approaches: synthesis of dual-function technetium complexes. Inorg Chem. 2012; 51(7): 4051-4057.
- 6Braband H. High-valent technetium chemistry—new opportunities for radiopharmaceutical developments. J Label Compd Radiopharm. 2014; 57: 270-274.
- 7Baidoo KE, Lever SZ. Synthesis of a diaminedithiol bifunctional chelating agent for incorporation of technetium-99m into biomolecules. Bioconjug Chem. 1990; 1: 132-137.
- 8Davison A, Jones AG, Orvig C, Sohn M. A new class of oxotechnetium(5+) chelate complexes containing a TcON2S2 core. Inorg Chem. 1981; 20(6): 1629-1632.
- 9Gustavson LM, Rao TN, Jones DS, Fritzberg AR, Srinivasan A. Synthesis of a new class of Tc chelating agents: N2S2 monoaminemonoamide (MAMA) ligands. Tet Lett. 1991; 32(40): 5485-5488.
- 10Vallabhajosula S, Zimmerman RE, Picard M, et al. Technetium-99m ECD: a new brain imaging agent: in vivo kinetics and biodistribution studies in normal human subjects. J Nucl Med. 1989; 30: 599-604.
- 11Jones AG, Davison A, LaTegola MA, et al. Chemical and in vivo studies of the anion oxo[N,N′-ethylenebis(2-mercaptoacetimido)]technetate(V). J Nucl Med. 1982; 23(9): 801-809.
- 12Liu S, Edwards DS, Looby RJ, et al. Labeling cyclic glycoprotein IIb/IIIa receptor antagonists with 99mTc by the preformed chelate approach: effects of chelators on properties of [99mTc]chelator-peptide conjugates. Bioconjug Chem. 1996; 7: 196-202.
- 13Baidoo KE, Lever SZ, Scheffel U. Bifunctional chelator for facile preparation of neutral technetium complexes. Bioconjug Chem. 1994; 5: 114-118.
- 14Meltzer PC, Blundell P, Jones AG, et al. A technetium-99m SPECT imaging agent which targets the dopamine transporter in primate brain. J Med Chem. 1997; 2623(96): 1835-1844.
- 15Meegalla SK, Plössl K, Kung M-P, et al. Specificity of diastereomers of [99mTc] TRODAT-1 as dopamine transporter imaging agents. J Med Chem. 1998; 2623(97): 428-436.
- 16Fritzberg AR, Kasina S, Eshima D, Johnson DL. Synthesis and biological evaluation of technetium-99m MAG3 as a Hippuran replacement. J Nucl Med. 1986; 27: 111-116.
- 17Eshima D, Taylor AJ. Technetium-99m (99mTc) mercaptoacetyltriglycine: update on the new 99mTc renal tubular function agent. Semin Nucl Med. 1992; 22: 61-73.
- 18Jurisson S, Schlemper E, Troutner DE, Canning LR, Nowotnik DP, Neirinckx RD. Synthesis, characterization, and X-ray structural determinations of technetium(V)-oxo-tetradentate amine oxime complexes. Inorg Chem. 1986; 543-549.
- 19Suess E, Malessa S, Ungersbock K, et al. Technetium-99m-d,1-hexamethylpropyleneamine oxime (HMPAO) uptake and glutathione content in brain tumors. J Nucl Med. 1991; 32: 1675-1681.
- 20Neirinckx RD, Burke JF, Harrison RC, Forster M, Andersen R, Lassen N. The retention mechanism of technetium-99m-HM-PAO: intracellular reaction with glutathione. J Cereb Blood Flow Metab. 1988; 8: S4-S12.
- 21Bandoli G, Nicolini M, Mazzi U, Refosco F. Synthesis and characterization of technetium(v) oxo-complexes with quadridentate Schiff-base ligands: X-ray structures of μ-oxo-bis-{oxo[N,N′-propane-1,3-diylbis(salicylideneiminato)]technetium(V)} and chloro-oxo[N,N′-propane-1,3-diylbis(salicylideneiminato)]-technetium(V). J Chem Soc Dalton Trans. 1984;(1): 2505-2511.
- 22Marmion ME, Woulfe SR, Neumann WL, Nosco DL, Deutsch E. Preparation and characterization of technetium complexes with Schiff base and phosphine coordination. 1. Complexes of technetium-99g and -99m with substituted (acac)2en and trialkyl phosphines (where (acac)2en=N,N′-ethylenebis[acetylacetoneiminato]). Nucl Med Biol. 1999; 26: 755-770.
- 23Vavouraki H, Papadopoulos M, Mastrostamatis S, Varvarigou AD, Psilla M, Chiotellis E. Preparation and biodistribution of a technetium cationic complex [TcIII(sacac)2en(PPh3)2]+. J Label Compd Radiopharm. 1993; 33: 249-257.
- 24Benny PD, Green JL, Engelbrecht HP, Barnes CL, Jurisson SS. Reactivity of rhenium(V) oxo Schiff base complexes with phosphine ligands: rearrangement and reduction reactions. Inorg Chem. 2005; 44(7): 2381-2390.
- 25Pietzsch H, Spies H, Hoffmann S. Lipophilic technetium complexes. VI. Neutral oxotechnetium (V) complexes with monothiole/tridentate dithiole coordination. Inorg Chim Acta. 1989; 165: 163-166.
- 26Spies H, Fietz T, Pietzsch H-J, et al. Neutral oxorhenium(V) complexes with tridentate dithiolates and monodentate alkane- or arene-thiolate coligands. J Chem Soc Dalton Trans. 1995; 2277-2280.
- 27Mastrostamatis SG, Papadopoulos MS, Pirmettis IC, et al. Tridentate ligands containing the SNS donor atom set as a novel backbone for the development of technetium brain-imaging agents. J Med Chem. 1994; 37: 3212-3218.
- 28Papadopoulos MS, Pirmettis IC, Pelecanou M, et al. Syn-anti isomerism in a mixed-ligand oxorhenium complex, ReO[SN(R)S][S]. Inorg Chem. 1996; 35(5): 7377-7383.
- 29Pirmettis IC, Papadopoulos MS, Chiotellis E. Novel 99mTc aminobisthiolato/monothiolato “3 + 1” mixed ligand complexes: structure-activity relationships and preliminary in vivo validation as brain blood flow imaging agents. J Med Chem. 1997; 40(96): 2539-2546.
- 30Papagiannopoulou D, Pirmettis I, Tsoukalas C, et al. Oxotechnetium 99mTcO[SN(R)S][S] complexes as potential 5-HT1A receptor imaging agents. Nucl Med Biol. 2002; 29(8): 825-832.
- 31Nock B, Maina T, Yannoukakos D, Pirmettis IC, Papadopoulos MS, Chiotellis E. Glutathione-mediated metabolism of technetium-99m SNS/S mixed ligand complexes: a proposed mechanism of brain retention. J Med Chem. 1999; 42: 1066-1075.
- 32Chi DY, Katzenellenbogen JA. Selective formation of heterodimeric bis-bidentate aminothiol-oxometal complexes or rhenium(V). J Am Chem Soc. 1993; 115: 7045-7046.
- 33Chi DY, O'Neil JP, Anderson CJ, Welch MJ, Katzenellenbogen J. Homodimeric and heterodimeric bis(amino thiol) oxometal complexes with rhenium(V) and technetium(V). Control of heterodimeric complex formation and an approach to metal complexes that mimic steroid hormones. J Med Chem. 1994; 37: 928-937.
- 34Hom RK, Chi DY, Katzenellenbogen J. Heterodimeric bis(amino thiol) complexes of oxorhenium(V) that mimic the structure of steroid hormones. Synthesis and stereochemical issues. J Org Chem. 1996; 61: 2624-2631.
- 35Ikeda I, Inoue O, Kurata K. Chemical and biological studies on 99mTc-DMS-II: effect of Sn(II) on the formation of various Tc-DMS complexes. Int J Appl Radiat Isot. 1976; 27: 681-688.
- 36Yokoyama A, Hata N, Horiuchi K, et al. The design of a pentavalent 99mTc-dimercaptosuccinate complex as a tumor imaging agent. Int J Nucl Med Biol. 1985; 12(4): 273-279.
- 37Blower PJ, Singh J, Clarke SEM. The chemical identity of pentavalent technetium-99m-dimercaptosuccinic acid. J Nucl Med. 1991; 32: 845-849.
- 38Blake AJ, Greig JA, Schröder MA. Rhenium complexes of tetra-aza macrocycles: the synthesis and single-crystal X-ray structure of trans-[Re(O)2(cyclam)]Cl·2(BPh3 · H2O). J Chem Soc Dalton Trans. 1988; 2645-2647.
- 39Troutner DE, Simon J, Ketring R, Volkert W, Holmes R. Complexing of Tc-99m with cyclam: concise communication. J Nucl Med. 1980; 21: 443-448.
- 40Volkert W, Troutner DE, Holmes R. Labeling of amine ligands with 99mTc in aqueous solutions by ligand exchange. Int J Appl Radiat Isot. 1982; 33: 891-896.
- 41Franz J, Volkert W, Barefield EK, Holmes R. The production of 99mTc-labeled conjugated antibodies using a cyclam-based bifunctional chelating agent. Int J Radiat Appl Instrum. 1987; 14(6): 569-572.
- 42Maina T, Nock B, Nikolopoulou A, et al. [99mTc]Demotate, a new 99mTc-based [Tyr3]octreotate analogue for the detection of somatostatin receptor-positive tumours: synthesis and preclinical results. Eur J Nucl Med Mol Imaging. 2002; 29(6): 742-753.
- 43Smith CJ, Li N, Katti KV, Higginbotham C, Volkert WA. In vitro and in vivo characterization of novel water-soluble dithio-bisphosphine 99mTc complexes. Nucl Med Biol. 1997; 24: 685-691.
- 44Karra SR, Schibli R, Gali H, et al. 99mTc-labeling and in vivo studies of a bombesin analogue with a novel water-soluble dithiadiphosphine-based bifunctional chelating agent. Bioconjug Chem. 1999; 10(2): 254-260.
- 45Kothari KK, Gali H, Prabhu KR, et al. Synthesis and characterization of 99mTc- and 188Re-complexes with a diamido-dihydroxymethylenephosphine-based bifunctional chelating. Nucl Med Biol. 2002; 29: 83-89.
- 46Deutsch E, Ketring AR, Libson K, Vanderheyden JL, Hirth WW. The Noah's ark experiment: species dependent biodistributions of cationic 99mTc complexes. Int J Radiat Appl Instrum Part B Nucl Med Biol. 1989; 16: 193-232.
- 47Deutsch E. Aspects of the chemistry of technetium phosphine complexes. Radiochim Acta. 1993; 63: 195-197.
- 48Kelly JD, Forster M, Higley B, et al. Technetium-99m-tetrofosmin as a new radiopharmaceutical for myocardial perfusion imaging. J Nucl Med. 1993; 34(2): 222-227.
- 49Pasqualini R, Duatti A, Bellande E, et al. Bis(dithiocarbamato) nitrido technetium-99m of neutral myocardial imaging agents. J Nucl Med. 1994; 35: 334-341.
- 50Pasqualini R, Comazzi V, Bellande E, Duatti A, Marchi A. A new efficient method for the preparation of 99mTc-radiopharmaceuticals containing the Tc-N multiple bond. Appl Radiat Isot. 1992; 43(11): 1329-1333.
- 51Tisato F, Refosco F, Porchia M, et al. The crucial role of the diphosphine heteroatom X in the stereochemistry and stabilization of the substitution-inert [M(N)(PXP)]2+ metal fragments (M = Tc, Re; PXP = diphosphine ligand). Inorg Chem. 2004; 43(26): 8617-8625.
- 52Boschi A, Uccelli L, Bolzati C, et al. Synthesis and biologic evaluation of monocationic asymmetric 99mTc-nitride heterocomplexes showing high heart uptake and improved imaging properties. J Nucl Med. 2003; 44(5): 806-814.
- 53Boschi A, Bolzati C, Benini E, et al. A novel approach to the high-specific-activity labeling of small peptides with the technetium-99m fragment [99mTc(N)(PXP)]2+ (PXP) diphosphine ligand. Bioconjug Chem. 2001; 12: 1035-1042.
- 54Abrams MJ, Juweid M, tenKate CI, et al. Technetium-99m-human polyclonal IgG radiolabeled via the hydrazino nicotinamide derivative for imaging focal sites of infection in rats. J Nucl Med. 1990; 31: 2022-2028.
- 55Hirsch-Kuchma M, Nicholson T, Davison A, Jones AG. Group 7 “organohydrazide” chemistry: classification of ligand type based on crystal structural data. J Chem Soc Dalton Trans. 1997; 3189-3192.
- 56Nicholson T, Cook J, Davison A, et al. The synthesis and characterization of [MCl3(N=NC5H4NH)(HN=NC5H4N)] from [MO4]− (where M=Re, Tc) organodiazenido, organodiazene-chelate complexes. The X-ray structure of [ReCl3(N=NC5H4NH) (HN=NC5H4N)]. Inorg Chim Acta. 1996; 252: 421-426.
- 57Larsen SK, Solomon HF, Caldwel G, Abrams MJ. [99mTc]Tricine: a useful precursor complex for the radiolabeling of hydrazinonicotinate protein conjugates. Bioconjug Chem. 1995; 6: 635-638.
- 58Wang J, Kim Y-S, Liu S. 99mTc-labeling of HYNIC-conjugated cyclic RGDfK dimer and tetramer using EDDA as coligand. Bioconjug Chem. 2008; 19(3): 634-642.
- 59Banerjee SR, Maresca KP, Stephenson K, et al. N,N-bis(2-mercaptoethyl)methylamine: a new coligand for Tc-99m labeling of hydrazinonicotinamide peptides. Bioconjug Chem. 2005; 16(4): 885-902.
- 60Liu S, Scott Edwards D, Harris AR. A novel ternary ligand system for 99mTc-labeling of hydrazino nicotinamide-modified biologically active molecules using imine-N-containing heterocycles as coligands. Bioconjug Chem. 1998; 9(98): 583-595.
- 61King RC, Surfraz MB-U, Biagini SCG, Blower PJ, Mather SJ. How do HYNIC-conjugated peptides bind technetium? Insights from LC-MS and stability studies. Dalton Trans. 2007; 43: 4998-5007.
- 62Ono M, Arano Y, Mukai T, et al. Control of radioactivity pharmacokinetics of 99mTc-HYNIC-labeled polypeptides derivatized with ternary ligand complexes. Bioconjug Chem. 2002; 13: 491-501.
- 63Decristoforo C, Mather SJ. The influence of chelator on the pharmacokinetics of 99mTc-labelled peptides. Q J Nucl Med. 2002; 46: 195-205.
- 64Rennen HJJM, Van Eerd JE, Oyen WJG, Corstens FHM, Edwards DS, Boerman OC. Effects of coligand variation on the in vivo characteristics of Tc-99m-labeled interleukin-8 in detection of infection. Bioconjug Chem. 2002; 13: 370-377.
- 65King R, Surfraz MB-U, Finucane C, Biagini SCG, Blower PJ, Mather SJ. 99mTc-HYNIC-gastrin peptides: assisted coordination of 99mTc by amino acid side chains results in improved performance both in vitro and in vivo. J Nucl Med. 2009; 50: 591-598.
- 66Spies H, Glaser M, Pietzsch H, Hahn FE, Lügger T. Synthesis and reactions of trigonal-bipyramidal rhenium and technetium complexes with a tripodal, tetradentate NS3 ligand. Inorg Chim Acta. 1995; 1693(95): 465-478.
- 67Seifert S, Künstler J-U, Schiller E, et al. Novel procedures for preparing 99mTc(III) complexes with tetradentate/monodentate coordination of varying lipophilicity and adaptation to 188Re analogues. Bioconjug Chem. 2004; 15(4): 856-863.
- 68Pietzsch H, Gupta A, Syhre R, Leibnitz P, Spies H. Mixed-ligand technetium(III) complexes with tetradendat monodendate NS3/isocyanide coordination: a new nonpolar technetium chelate system for the design of neutral and lipophilic complexes stable in vivo. Bioconjug Chem. 2001; 12: 538-544.
- 69Jones AG, Abrams MJ, Davison A, et al. Biological studies of a new class of technetium complexes: the hexakis(alkylisonitrile)technetium(I) cations. Int J Nucl Med Biol. 1984; 11(314): 225-234.
- 70Holman BL, Sporn V, Jones AG, et al. Myocardial imaging with technetium-99m CPI: initial experience in the human. J Nucl Med. 1987; 28: 13-18.
- 71Hung JC, Herold Thomas J, Gibbons RJ. Optimal conditions of 99mTc eluate for the radiolabeling of 99mTc-Sestamibi. Nucl Med Biol 1996; 23: 599-603.
- 72Alberto R, Ortner K, Wheatley N, Schibli R, Schubiger AP. Synthesis and properties of boranocarbonate. J Am Chem Soc. 2001; 123(12): 3135-3136.
- 73Alberto R, Schibli R, Egli A, Schubiger AP, Abram U, Kaden TA. A novel organometallic aqua complex of technetium for the labeling of biomolecules: synthesis of [99mTc(OH2)3(CO)3]+ from [99mTcO4]− in aqueous solution and its reaction with a bifunctional ligand. J Am Chem Soc. 1998; 120(31): 7987-7988.
- 74Schibli R, Schubiger PA. Current use and future potential of organometallic radiopharmaceuticals. Eur J Nucl Med Mol Imaging. 2002; 29(11): 1529-1542.
- 75Schibli R, La Bella R, Alberto R, et al. Influence of the denticity of ligand systems on the in vitro and in vivo behavior of 99mTc(I)−tricarbonyl complexes: a hint for the future functionalization of biomolecules. Bioconjug Chem. 2000; 11(3): 345-351.
- 76Safi B, Mertens J, De Proft F, Geerlings P. A computational and conceptual density functional theory study of the properties of Re and Tc tricarbonyl complexes. J Phys Chem A. 2006; 110(29): 9240-9246.
- 77Maresca KP, Marquis JC, Hillier SM, et al. Novel polar single amino acid chelates for technetium-99m tricarbonyl-based radiopharmaceuticals with enhanced renal clearance: application to octreotide. Bioconjug Chem. 2010; 21(6): 1032-1042.
- 78Vitor RF, Alves S, Correia JDG, Paulo A, Santos I. Rhenium(I)- and technetium(I) tricarbonyl complexes anchored by bifunctional pyrazole-diamine and pyrazole-dithioether chelators. J Organomet Chem. 2004; 689(25): 4764-4774.
- 79Stephenson KA, Banerjee SR, Sogbein OO, et al. A new strategy for the preparation of peptide-targeted technetium and rhenium radiopharmaceuticals. The automated solid-phase synthesis, characterization, labeling, and screening of a peptide-ligand library targeted at the formyl peptide receptor. Bioconjug Chem. 2005; 16(5): 1189-1195.
- 80Stephenson KA, Reid LC, Zubieta J, et al. Synthesis and screening of a library of Re/Tc-based amyloid probes derived from β-breaker peptides. Bioconjug Chem. 2008; 19(5): 1087-1094.
- 81Mendes F, Gano L, Fernandes C, Paulo A, Santos I. Studies of the myocardial uptake and excretion mechanisms of a novel 99mTc heart perfusion agent. Nucl Med Biol. 2012; 39(2): 207-213.
- 82Alberto R, Pak JK, van Staveren D, Mundwiler S, Benny. Mono-, bi-, or tridentate ligands? The labeling of peptides with 99mTc-carbonyls. Biopolymers. 2004; 76(4): 324-333.
- 83Van Staveren DR, Mundwiler S, Hoffmanns U, et al. Conjugation of a novel histidine derivative to biomolecules and labelling with [99mTc(OH2)3(CO)3]+. Org Biomol Chem. 2004; 2(18): 2593-2603.
- 84Mindt TL, Struthers H, Brans L, et al. “Click to chelate”: synthesis and installation of metal chelates into biomolecules in a single step. J Am Chem Soc. 2006; 128: 15,096-15,097.
- 85Mindt TL, Muller C, Stuker F, et al. A “click chemistry” approach to the efficient synthesis of multiple imaging probes derived from a single precursor. Bioconjug Chem. 2009; 20(10): 1940-1949.
- 86Dumas C, Petrig J, Frei L, Spingler B, Schibli R. Functionalization of glucose at position C-3 for transition metal coordination: organo-rhenium complexes with carbohydrate. Bioconjug Chem. 2005; 16: 421-428.
- 87Desbouis D, Struthers H, Spiwok V, Küstler T, Schibli R. Synthesis, in vitro, and in silico evaluation of organometallic technetium and rhenium thymidine complexes with retained substrate activity toward human thymidine kinase type 1. J Med Chem. 2008; 51: 6689-6698.
- 88He H, Morely JE, Silva-Lopez E, et al. Synthesis and characterization of nonsteroidal-linked M(CO)3+ (M=99mTc, Re) compounds based on the androgen receptor targeting molecule flutamide. Bioconjug Chem. 2009; 20(1): 78-86.
- 89He H, Lipowska M, Xu X, Taylor AT, Marzilli LG. Rhenium analogues of promising renal imaging agents with a {99mTc(CO)3}+ core bound to cysteine-derived dipeptides, including lanthionine. Inorg Chem. 2007; 46(8): 3385-3394.
- 90Lipowska M, He H, Malveaux E, Xu X, Marzilli LG, Taylor A. First evaluation of a 99mTc-tricarbonyl complex, 99mTc(CO)3(LAN), as a new renal radiopharmaceutical in humans. J Nucl Med. 2006; 47(6): 1032-1040.
- 91Struthers H, Spingler B, Mindt TL, Schibli R. “Click-to-chelate”: design and incorporation of triazole-containing metal-chelating systems into biomolecules of diagnostic and therapeutic interest. Chem A Eur J. 2008; 14(20): 6173-6183.
- 92He H, Lipowska M, Xu X, Taylor AT, Carlone M, Marzilli LG. Re(CO)3 complexes synthesized via an improved preparation of aqueous fac-[Re(CO)3(H2O)3]+ as an aid in assessing 99mTc imaging agents. Structural characterization and solution behavior of complexes with thioether-bearing amino acids as tridentate ligands. Inorg Chem. 2005; 44(15): 5437-5446.
- 93Van Staveren DR, Benny PD, Waibel R, Kurz P, Pak J-K, Alberto R. S-functionalized cysteine: powerful ligands for the labelling of bioactive molecules with triaquatricarbonyltechnetium-99m. Helv Chim Acta. 2005; 88: 447-460.
- 94Schibli R, Alberto R, Abram U, Abram S, Schubiger PA, Kaden TA. Structural and 99Tc NMR investigations of complexes with fac-[Tc(CO)3]+ moieties and macrocyclic thioethers of various ring sizes: synthesis and X-ray structure of the complexes fac-[Tc(9-ane-S3)(CO)3]Br, fac-[Tc2(tosylate)2(18-ane-S6)(CO)6], and fac-[Tc2(20-ane-S6-OH)(CO)6][tosylate]2. Inorg Chem. 1998; 37(14): 3509-3516.
- 95Kim Y-S, Hea Z, Schibli R, Liu S. Synthesis, characterization and X-ray crystal structure of [Re(L4)(CO)3]Br·2CH3OH (L4=N,N-bis[(2-diphenylphosphino)ethyl]methoxyethylamine): a model compound for novel cationic 99mTc(I)-tricarbonyl radiotracers useful for heart imaging. Inorg Chim Acta. 2006; 359(8): 2479-2488.
- 96Kannan R, Pillarsetty N, Gali H, et al. Design and synthesis of a bombesin peptide-conjugated tripodal phosphino dithioether ligand topology for the stabilization of the fac-[M(CO)3] core (M=99mTc or re). Inorg Chem. 2011; 50: 6210-6219.
- 97Kothari KK, Raghuraman K, Pillarsetty NK, et al. Syntheses, in vitro and in vivo characterization of a 99mTc-(I)-tricarbonyl-benzylamino-dihydroxymethyl phosphine (NP2) chelate. Appl Radiat Isot. 2003; 58(5): 543-549.
- 98Mundwiler S, Kündig M, Ortner K, Alberto R. A new [2 + 1] mixed ligand concept based on [99(m)Tc(OH2)3(CO)3]+: a basic study. Dalton Trans. 2004;(9): 1320-1328.
- 99Zelenka K, Borsig L, Alberto R. Trifunctional 99mTc based radiopharmaceuticals: metal-mediated conjugation of a peptide with a nucleus targeting intercalator. Org Biomol Chem. 2011; 9(4): 1071-1078.
- 100Triantis C, Tsotakos T, Tsoukalas C, et al. Synthesis and characterization of fac-[M(CO)3(P)(OO)] and cis-trans-[M(CO)2(P)2(OO)] complexes (M = Re, 99mTc) with acetylacetone and curcumin as OO donor bidentate ligands. Inorg Chem. 2013; 52: 12,995-13,003.
- 101Ferreira CL, Bayly SR, Green DE, et al. Carbohydrate-appended 3-hydroxy-4-pyridinone complexes of the [M(CO)3]+ core (M = Re, 99mTc, 186Re). Bioconjug Chem. 2006; 17(5): 1321-1329.
- 102Riondato M, Camporese D, Martín D, Suades J, Alvarez-Larena A, Mazzi U. Synthesis and characterisation of [Re(CO)3(SS)(P)] complexes: a [2 + 1] concept for 99mTc- and 188Re-radiopharmaceutical applications. Eur J Inorg Chem. 2005; 20: 4048-4055.
- 103Gorshkov NI, Schibli R, Schubiger AP, Lumpov AA, Miroslavov E, Suglobov DN. “2 + 1” Dithiocarbamate-isocyanide chelating systems for linking (M=99mTc, Re) fragment to biomolecules. J Organomet Chem. 2004; 689(25): 4757-4763.
- 104Yazdani A, Janzen N, Banevicius L, Czorny S, Valliant JF. Imidazole-based [2 + 1] Re(I)/99mTc(I) complexes as isostructural nuclear and optical probes. Inorg Chem. 2015; 54(4): 1728-1736.
- 105Schibli R, Katti KV, Higginbotham C, Volkert WA, Alberto R. In vitro and in vivo evaluation of bidentate, water-soluble phosphine ligands as anchor groups for the organometallic fac-[99mTc(CO)3]+-core. Nucl Med Biol. 1999; 26(99): 711-716.
- 106Wald J, Alberto R, Ortner K, Candreira L. Aqueous one-pot synthesis of derivatized cyclopentadienyl-tricarbonyl complexes of Tc with an in situ CO source: application to a serotonergic receptor ligand. Angew Chem Int Ed. 2001; 40: 3062-3066.
10.1002/1521-3773(20010817)40:16<3062::AID-ANIE3062>3.0.CO;2-O CASPubMedWeb of Science®Google Scholar
- 107Bernard J, Ortner K, Spingler B, Pietzsch H-J, Alberto R. Aqueous synthesis of derivatized cyclopentadienyl complexes of technetium and rhenium directed toward radiopharmaceutical application. Inorg Chem. 2003; 42(4): 1014-1022.
- 108Liu Y, Spingler B, Schmutz P, Alberto R. Metal-mediated retro Diels-Alder of dicyclopentadiene derivatives: a convenient synthesis of [(Cp-R)M(CO)3] (M=99mTc, Re) complexes. J Am Chem Soc. 2008; 130: 1554-1555.
- 109Sogbein OO, Merdy P, Morel P, Valliant JF. Preparation of Re(I)- and 99mTc(I)-metallocarboranes in water under weakly basic reaction conditions. Inorg Chem. 2004; 43(10): 3032-3034.
- 110Armstrong AF, Valliant JF. Microwave-assisted synthesis of tricarbonyl rhenacarboranes: steric and electronic effects on the 1,2→1,7 carborane cage isomerization. Inorg Chem. 2007; 46(6): 2148-2158.
- 111Causey PW, Besanger TR, Valliant JF. Synthesis and screening of mono- and di-aryl technetium and rhenium metallocarboranes. A new class of probes for the estrogen receptor. J Med Chem. 2008; 51(9): 2833-2844.
- 112Benz M, Braband H, Schmutz P, Halter J, Alberto R. From TcVII to TcI; facile syntheses of bis-arene complexes [99(m)Tc(arene)2]+ from pertechnetate. Chem Sci. 2015; 6: 165-169.
- 113Banerjee SR, Foss C, Castanares M, et al. Synthesis and evaluation of technetium-99m- and rhenium-labeled inhibitors of the prostate-specific membrane antigen (PSMA). J Med Chem. 2008; 51(15): 4504-4517.
- 114Banerjee SR, Pullambhatla M, Foss C, et al. Effect of chelators on the pharmacokinetics of 99mTc-labeled imaging agents for the prostate-specific membrane antigen (PSMA). J Med Chem. 2013; 56: 6108-6121.
- 115Lu G, Maresca KP, Hillier SM, et al. Synthesis and SAR of 99mTc/Re-labeled small molecule prostate specific membrane antigen inhibitors with novel polar chelates. Bioorg Med Chem Lett. 2013; 23(5): 1557-1563.
- 116Liu S. Bifunctional coupling agents for radiolabeling of biomolecules and target-specific delivery of metallic radionuclides. Adv Drug Deliv Rev. 2008; 60: 1347-1370.
- 117Moore AL, Bucar D-K, Macgillivray LR, Benny PD. “Click” labeling strategy for M(CO)3 (M=Re, 99mTc) prostate cancer targeted flutamide agents. Dalton Trans. 2010; 39: 1926-1928.
- 118Yazdani A, Bilton H, Vito A, et al. A bone-seeking trans-cyclooctene for pretargeting and bioorthogonal chemistry: a proof of concept study using 99mTc- and 177 Lu-labeled tetrazines. J Med Chem. 2016; 59(20): 9381-9389.
- 119Cantorias MV, Howell RC, Todaro L, et al. MO tripeptide diastereomers (M=99/99mTc, re ): models to identify the structure of 99mTc peptide targeted radiopharmaceuticals. Inorg Chem. 2007; 46(18): 7326-7340.
- 120Karacay H, McBride WJ, Griffiths GL, et al. Experimental pretargeting studies of cancer with a humanized anti-CEA x murine anti-[In-DTPA] bispecific antibody construct and a 99mTc-/188Re-labeled peptide. Bioconjug Chem. 2000; 11: 842-854.
- 121Stephenson KA, Zubieta J, Banerjee SR, et al. A new strategy for the preparation of peptide-targeted radiopharmaceuticals based on an Fmoc-lysine-derived single amino acid chelate (SAAC). Automated solid-phase synthesis, NMR characterization, and in vitro screening of fMLF(SAAC)G and fMLF[(SAAC-Re(CO)3)]. Bioconjug Chem. 2004; 15(1): 128-136.
- 122Hillier SM, Maresca KP, Lu G, et al. 99mTc-labeled small-molecule inhibitors of prostate-specific membrane antigen for molecular imaging of prostate cancer. J Nucl Med. 2013; 54(8): 1369-1376.
- 123Giblin MF, Wang N, Hoffman TJ, Jurisson SS, Quinn TP. Design and characterization of alpha-melanotropin peptide analogs cyclized through rhenium and technetium metal coordination. Proc Natl Acad Sci U S A. 1998; 95: 12,814-12,818.
- 124Bigott-Hennkens HM, Dannoon SF, Noll SM, Ruthengael VC, Jurisson SS, Lewis MR. Labeling, stability and biodistribution studies of 99mTc-cyclized Tyr3-octreotate derivatives. Nucl Med Biol. 2011; 38(4): 549-555.
- 125Rhodes BA. Direct labeling of proteins with 99mTc. Int J Radiat Appl Instrum Part B Nucl Med Biol. 1991; 18: 667-676.
- 126Thakur ML, DeFulvio J, Richard MD, Park CH. Technetium-99m labeled monoclonal antibodies: evaluation of reducing agents. Int J Radiat Appl Instrum Part B Nucl Med Biol. 1991; 18(2): 227-233.
- 127Mather SJ, Ellison D. Reduction-mediated technetium-99m labeling of monoclonal antibodies. J Nucl Med. 1990; 31: 692-697.
- 128Stalteri MA, Mather SJ. Technetium-99m labelling of the anti-tumour antibody PR1A3 by photoactivation. Eur J Nucl Med. 1996; 23(2): 178-187.
- 129Stopar TG, Mlinaric-Rascan I, Fettich J, Hojker S, Mather SJ. 99mTc-rituximab radiolabelled by photo-activation: a new non-Hodgkin's lymphoma imaging agent. Eur J Nucl Med Mol Imaging. 2006; 33(1): 53-59.
- 130Pauwels EKJ, Welling MM, Feitsma RIJ, Etsma DE, Nieuwehnhuizen W. The labeling of proteins and LDL with 99mTc: a new direct method employing KBH4 and stannous chloride. Nucl Med Biol. 1993; 20: 825-833.
- 131Dhawan S. Design and construction of novel molecular conjugates for signal amplification (I): conjugation of multiple horseradish peroxidase molecules to immunoglobulin via primary amines on lysine peptide chains. Peptides. 2002; 23: 2091-2098.
- 132Ranadive GN, Rosenzweig HS, Epperly MW, Seskey T, Bloomer WD. A new method of technetium-99m labeling of monoclonal antibodies through sugar residues. A study with TAG-72 specific CC-49 antibody. Nucl Med Biol. 1993; 20(6): 719-726.
- 133Lanteigne D, Hnatowich DJ. The labeling of DTPA-coupled proteins with 99mTc. Int J Appl Radiat Isot. 1984; 35(7): 617-621.
- 134Fritzberg AR, Abrams PG, Beaumier PL, et al. Specific and stable labeling of antibodies with technetium-99m with a diamide dithiolate chelating agent. Proc Natl Acad Sci U S A. 1988; 85: 4025-4029.
- 135Baidoo KE, Scheffel U, Lever SZ. 99mTc labeling of proteins: initial evaluation of a novel diaminedithiol bifunctional chelating agent. Cancer Res. 1990; 50: 799-803.
- 136Arano Y, Yokoyama A, Magata Y, Saji H, Horiuchi K, Torizuka K. Synthesis and evaluation of a new bifunctional chelating agent for 99mTc labeling proteins: p-carboxyethylphenylglyoxal-di(N-methylthiosemicarbazone). Int J Nucl Med Biol. 1986; 12(6): 425-430.
- 137Liu S, Edwards DS, Looby RJ, et al. Labeling a Hydrazino nicotinamide-modified cyclic IIb/IIIa receptor antagonist with 99mTc using aminocarboxylates as coligands. Bioconjug Chem. 1996; 7: 63-71.
- 138Waibel R, Alberto R, Willuda J, et al. Stable one-step technetium-99m labeling of His-tagged recombinant proteins with a novel Tc(I)-carbonyl complex. Nat Biotechnol. 1999; 17: 897-901.
- 139Badar A, Williams J, de Rosales RT, et al. Optimising the radiolabelling properties of technetium tricarbonyl and His-tagged proteins. EJNMMI Res. 2014; 4(1): 14.
- 140Hofström C, Orlova A, Altai M, Wangsell F, Gräslund T, Tolmachev V. Use of a HEHEHE purification tag instead of a hexahistidine tag improves biodistribution of affibody molecules site-specifically labeled with 99mTc, 111In, and 125I. J Med Chem. 2011; 54: 3817-3826.
- 141Knight JC, Cornelissen B. Bioorthogonal chemistry: implications for pretargeted nuclear (PET/SPECT) imaging and therapy. Am J Nucl Med Mol Imaging. 2014; 4(2): 96-113.
- 142Vera DR, Wallace AM, Hoh CK, Mattrey RF. A synthetic macromolecule for sentinel node detection: 99mTc-DTPA-mannosyl-dextran. J Nucl Med. 2001; 42: 951-959.
- 143Pirmettis I, Arano Y, Tsotakos T, et al. New 99mTc(CO)3 mannosylated dextran bearing S-derivatized cysteine chelator for sentinel lymph node detection. Mol Pharm. 2012; 9: 1681-1692.
- 144Morais M, Subramanian S, Pandey U, et al. Mannosylated dextran derivatives labeled with fac-[M(CO)3]+ (M=99mTc, Re) for specific targeting of sentinel lymph node. Mol Pharm. 2011; 8: 609-620.
- 145Petersen AL, Hansen AE, Gabizon A, Andresen TL. Liposome imaging agents in personalized medicine. Adv Drug Deliv Rev. 2012; 64(13): 1417-1435.
- 146Laverman P, Dams ET, Oyen WJ, et al. A novel method to label liposomes with 99mTc by the hydrazino nicotinyl derivative. J Nucl Med. 1999; 40: 192-197.
- 147Hnatowich DJ, Friedman B, Clancy B, Novak M. Labeling of preformed liposomes with Ga-67 and Tc-99m by chelation. J Nucl Med. 1981; 22: 810-814.
- 148Underwood C, van Eps W, Ross MW, et al. Intravenous technetium-99m labelled PEG-liposomes in horses: a safety and biodistribution study. Equine Vet J. 2012; 44(2): 196-202.
- 149Phillips WT, Rudolph AS, Goins B, Timmons JH, Klipper R, Blumhardt R. A simple method for producing a liposome which is stable in vivo. Nucl Med Biol. 1992; 19(5): 539-547.
- 150Oyen WJ, Boerman OC, Storm G, et al. Detecting infection and inflammation with technetium-99m-labeled stealth liposomes. J Nucl Med. 1996; 37: 1392-1397.
- 151Bao A, Goins B, Klipper R, Negrete G, Phillips WT. Direct 99mTc labeling of pegylated liposomal doxorubicin (Doxil) for pharmacokinetic and non-invasive imaging studies. J Pharmacol Exp Ther. 2004; 308(2): 419-425.
- 152Oku N, Namba Y, Takeda A, Okada S. Tumor imaging with technetium-99m-DTPA encapsulated in RES-avoiding liposomes. Nucl Med Biol. 1993; 20(4): 407-412.
- 153Ferreira SMZMD, Domingos GP, Ferreira DDS, et al. Technetium-99m-labeled ceftizoxime loaded long-circulating and pH-sensitive liposomes used to identify osteomyelitis. Bioorg Med Chem Lett. 2012; 22(14): 4605-4608.
- 154Chaudhari KR, Ukawala M, Manjappa AS, et al. Opsonization, biodistribution, cellular uptake and apoptosis study of PEGylated PBCA nanoparticle as potential drug delivery carrier. Pharm Res. 2012; 29(1): 53-68.
- 155Polyak A, Palade E, Balogh L, et al. In vitro and biodistribution examinations of Tc-99m-labelled doxorubicin-loaded nanoparticles. Nucl Med Rev. 2011; 14(2): 55-62.
- 156Areses P, Agüeros MT, Quincoces G, et al. Molecular imaging techniques to study the biodistribution of orally administered 99mTc-labelled naive and ligand-tagged nanoparticles. Mol Imaging Biol. 2011; 13(6): 1215-1223.
- 157Madru R, Kjellman P, Olsson F, et al. 99mTc-labeled superparamagnetic iron oxide nanoparticles for multimodality SPECT/MRI of sentinel lymph nodes. J Nucl Med. 2012; 53: 459-463.
- 158Lee PW, Hsu SH, Wang JJ, et al. The characteristics, biodistribution, magnetic resonance imaging and biodegradability of superparamagnetic core-shell nanoparticles. Biomaterials. 2010; 31(6): 1316-1324.
- 159Psimadas D, Baldi G, Ravagli C, et al. Comparison of the magnetic, radiolabeling, hyperthermic and biodistribution properties of hybrid nanoparticles bearing CoFe2O4 and Fe3O4 metal cores. Nanotechnology. 2014; 25:025101.
- 160Gundogdu E, Ilem-Ozdemir D, Ekinci M, Ozgenc E, Asikoglu M. Radiolabeling efficiency and cell incorporation of chitosan nanoparticles. J Drug Deliv Sci Technol. 2015; 29: 84-89.
- 161Georgiadou V, Makris G, Papagiannopoulou D, Vourlias G, Dendrinou-Samara C. Octadecylamine-mediated versatile coating of CoFe2O4 NPs for the sustained release of anti-inflammatory drug naproxen and in vivo target selectivity. ACS Appl Mater Interfaces. 2016; 8: 9345-9360.
- 162Zhang Y, Sun Y, Xu X, et al. Synthesis, biodistribution, and microsingle photon emission computed tomography (SPECT) imaging study of technetium-99m labeled PEGylated dendrimer poly(amidoamine) (PAMAM)-folic acid conjugates. J Med Chem. 2010; 53: 3262-3272.
- 163Torres R, de Rosales M, Tavar R, et al. Tc-bisphosphonate-iron oxide nanoparticle conjugates for dual-modality biomedical imaging. Bioconjug Chem. 2011; 22: 455-465.
- 164İçhedef Ç, Teksöz S, Ünak P, Medine Eİ, Ertay T, Bekiş R. Preparation and characterization of radiolabeled magnetic nanoparticles as an imaging agent. J Nanopart Res. 2012; 14(8): 1077.
- 165Bogdanov AA, Gupta S, Koshkina N, et al. Gold nanoparticles stabilized with MPEG-grafted poly(l-lysine): in vitro and in vivo evaluation of a potential theranostic agent. Bioconjug Chem. 2015; 26: 39-50.
- 166Jiménez-Mancilla N, Ferro-Flores G, Santos-Cuevas C, et al. Multifunctional targeted therapy system based on 99mTc/177 Lu-labeled gold nanoparticles-tat(49-57)-Lys3-bombesin internalized in nuclei of prostate cancer cells. J Labelled Comp Radiopharm. 2013; 56(13): 663-671.
- 167Pavel D, Zimmer AM, Patterson VN. In vivo labeling of red blood cells with 99mTc: a new approach to blood pool visualization. J Nucl Med. 1977; 18(3): 305-308.
- 168Bauer R, Haluszczynski I, Langhammer H, Bachmann W. Medicine in vivo/in vitro labeling of red blood cells with 99mTc. Eur J Nucl Med. 1983; 8: 218-222.
- 169Srivastava SC, Straub RF. Blood cell labeling with 99mTc: progress and perspectives. Semin Nucl Med. 1990; 20: 41-51.
- 170Peters AM, Danpure HJ, Osman S, et al. Clinical experience with 99mTc-hexamethylpropylene-aminoxime for labelling leucocytes and imaging inflammation. Lancet. 1986; 946-949.
- 171Detante O, Dimastromatteo J, Richard M, et al. Intravenous administration of 99mTc-HMPAO-labeled human mesenchymal stem cells after stroke: in vivo imaging and biodistribution. Cell Transplant. 2009; 18(28): 1369-1379.
- 172Rusckowski M, Gupta S, Liu G, Dou S, Hnatowich DJ. Investigations of a 99mTc-labeled bacteriophage as a potential infection-specific imaging agent. J Nucl Med. 2004; 45: 1201-1208.
- 173Rusckowski M, Gupta S, Liu G, Dou S, Hnatowich DJ. Investigation of four 99mTc-labeled bacteriophages for infection-specific imaging. Nucl Med Biol. 2008; 35: 433-440.
- 174Simms RW, Causey PW, Weaver DM, Sundararajan C, Stephenson KA, Valliant JF. Preparation of technetium-99m bifunctional chelate complexes using a microfluidic reactor: a comparative study with conventional and microwave labeling methods. J Label Compd Radiopharm. 2012; 55(1): 18-22.