Proteomics analysis of the Flp regulon in Lactococcus lactis subsp. cremoris
Corresponding Author
Ismail Akyol
Department of Agricultural Biotechnology, Faculty of Agriculture, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
Microbiology and Microbial Genetics Laboratory, USKIM, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
Correspondence: Dr. Ismail Akyol, Department of Agricultural Biotechnology, Faculty of Agriculture, Kahramanmaras Sutcu Imam University, 46100 Kahramanmaras, Turkey
E-mail:[email protected]
Fax: +90-344-2191526
Search for more papers by this authorCorresponding Author
Ismail Akyol
Department of Agricultural Biotechnology, Faculty of Agriculture, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
Microbiology and Microbial Genetics Laboratory, USKIM, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
Correspondence: Dr. Ismail Akyol, Department of Agricultural Biotechnology, Faculty of Agriculture, Kahramanmaras Sutcu Imam University, 46100 Kahramanmaras, Turkey
E-mail:[email protected]
Fax: +90-344-2191526
Search for more papers by this authorAbstract
Lactococcus lactis subsp. cremoris MG1363 genome sequence was completed and encodes two flp genes flpA and flpB. Research carried out has suggested that the flpB proteins are transcriptional regulators that respond to the environmental oxygen level. A variety of flp deletion mutant strains with single and double mutation were created. Wild-type (MG1363) and its flp− derivatives were compared by 2DE to identify changes in protein intensity under different aerobic/anaerobic growth conditions. In total, 416 ± 20 and 444 ± 32 protein spots were quantified from anaerobic and aerobic cells, respectively, on pH 4–7 gels. Forty-five protein spots that changed were excised from 2DE gel, digested with trypsin and identified from their MALDI-TOF MS Peptide Mass Fingerprint. A variety of proteins were affected by the flp mutations and oxygen level. Some proteins were controlled by FlpA and FlpB independently and some required both FlpA and B for regulation. The identified proteins that are regulated by the Flp proteins can be grouped by biochemical function. These groups are oxidative stress, electron transfer, sugars, cell wall, ABC transporters, arginine metabolism, and pyrimidine biosynthesis pathway.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
elps4755-sup-0001-S1.zip726.3 KB | Figure S1. 2-DE gel of proteins from MG1363 (aerobic mid-exponential phase) whole cell extract stained with silver nitrate. Proteins separated in a pI gradient 3–10 and 100 μg of protein was loaded on the gel. Figure S2. 2-DE gel of proteins from MG1363 (aerobic mid-exponential phase) whole cell extract stained with silver nitrate. Proteins separated in a pI gradient 6–11 and 100 μg of protein was loaded on the gel. Figure S.3. Corresponding region of silver stained gels for the MG1363 (wild type), FI9077 (flpA−), FI9124 (flpB−), and FI9241 (flpAB−) strains grown under aerobic conditions and harvested at mid-exponential phase. Differences were indicated using circles. Table S1. List of peptide mass fingerprints values (peptide m/z value) from the digestion of a protein by trypsin enzyme. Table S2. Comparison of MG1363 under aerobic and anaerobic growth conditions at exponential and stationary phase. Table S3. Spot differences between MG1363 and the flp mutants. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
5 References
- 1Anglade, P., Demey, E., Labas, V., Le Caer, J. P., Chich, J. F., Electrophoresis 2000, 21, 2546–2549.
10.1002/1522-2683(20000701)21:12<2546::AID-ELPS2546>3.0.CO;2-J CASPubMedWeb of Science®Google Scholar
- 2Kilstrup, M., Jacobsen, S., Hammer, K., Vogensen, F. K., Appl. Environ. Microbiol. 1997, 63, 1826–1837.
- 3Wouters, J. A., Mailhes, M., Rombouts, F. M., De Vos, W. M., Kuipers, O. P., Abee, T., Appl. Environ. Microbiol. 2000, 66, 3756–3763.
- 4Wouters, J. A., Frenkiel, H., de Vos, W. M., Kuipers, O. P., Abee, T., Appl. Environ. Microbiol. 2001, 67, 5171–5178.
- 5Bolotin, A., Wincker, P., Mauger, S., Jaillon, O., Malarme, K., Weissenbach, J., Ehrlich, S. D., Sorokin, A., Genome Res. 2001, 11, 731–753.
- 6Makarova, K., Slesarev, A., Wolf, Y., Sorokin, A., Mirkin, B., Koonin, E., Pavlov, A., Pavlova, N., Karamychev, V., Polouchine, N., Shakhova, V., Grigoriev, I., Lou, Y., Rohksar, D., Lucas, S., Huang, K., Goodstein, D. M., Hawkins, T., Plengvidhya, V., Welker, D., Hughes, J., Goh, Y., Benson, A., Baldwin, K., Lee, J. H., Diaz-Muniz, I., Dosti, B., Smeianov, V., Wechter, W., Barabote, R., Lorca, G., Altermann, E., Barrangou, R., Ganesan, B., Xie, Y., Rawsthorne, H., Tamir, D., Parker, C., Breidt, F., Broadbent, J., Hutkins, R., O'Sullivan, D., Steele, J., Unlu, G., Saier, M., Klaenhammer, T., Richardson, P., Kozyavkin, S., Weimer, B., Mills, D., Proc. Natl. Acad. Sci. USA 2006, 103, 15611–15616.
- 7Wegmann, U., O'Connell-Motherwy, M., Zomer, A., Buist, G., Shearman, C., Canchaya, C., Ventura, M., Goesmann, A., Gasson, M. J., Kuipers, O. P., van Sinderen, D., Kok, J., J. Bacteriol. 2007, 189, 3256–3270.
- 8Postma, P. W., Lengeler, J. W., Jacobson, G. R., Microbiol. Rev. 1993, 57, 543–594.
- 9Poolman, B., FEMS Microbiol. Revi. 1993, 12, 125–148.
- 10Fath, M. J., Kolter, R., Microbiol. Rev. 1993, 57, 995–1017.
- 11Goerke, B., Stulke, J., Nat. Rev. Microbiol. 2008, 6, 613–624.
- 12deVos, W. M., Anton Leeuw Int. J G 1996, 70, 223–242.
- 13Bardowski, J., Ehrlich, S. D., Chopin, A., J. Bacteriol. 1994, 176, 5681–5685.
- 14Aleksandrzak-Piekarczyk, T., Kok, J., Renault, P., Bardowski, J., Appl. Environ. Microbiol. 2005, 71, 6060–6069.
- 15Aleksandrzak-Piekarczyk, T., Polak, J., Jezierska, B., Renault, P., Bardowski, J., Int. J. Food Microbiol. 2011, 145, 186–194.
- 16Castro, R., Neves, A. R., Fonseca, L. L., Pool, W. A., Kok, J., Kuipers, O. P., Santos, H., Mol. Microbiol. 2009, 71, 795–806.
- 17Gostick, D. O., Griffin, H. G., Shearman, C. A., Scott, C., Green, J., Gasson, M. J., Guest, J. R., Mol. Microbiol. 1999, 31, 1523–1535.
- 18Scott, C., Guest, J. R., Green, J., Mol. Microbiol. 2000, 35, 1383–1393.
- 19Akyol, I., Shearman, C. A., Curr. Microbiol. 2008, 57, 200–205.
- 20Gasson, M. J., J. Bacteriol. 1983, 154, 1–9.
- 21Rawsthorne, H., PhD thesis, University of East Anglia, UK 200.
- 22Shevchenko, A., Wilm, M., Vorm, O., Mann, M., Anal. Chem. 1996, 68, 850–858.
- 23Holmes, K., Mulholland, F., Pearson, B. M., Pin, C., McNicholl-Kennedy, J., Ketley, J. M., Wells, J. M., Microbiology-Sgm. 2005, 151, 243–257.
- 24Pappin, D. J. C., Hojrup, P., Bleasby, A. J., Curr. Biol. 1993, 3, 327–332.
- 25Perkins, D. N., Pappin, D. J. C., Creasy, D. M., Cottrell, J. S., Electrophoresis 1999, 20, 3551–3567.
10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2 CASPubMedWeb of Science®Google Scholar
- 26Ong, S. E., Mann, M., Nat. Chem. Biol. 2005, 1, 252–262.
- 27Harry, J. L., Wilkins, M. R., Herbert, B. R., Packer, N. H., Gooley, A. A., Williams, K. L., Electrophoresis 2000, 21, 1071–1081.
10.1002/(SICI)1522-2683(20000401)21:6<1071::AID-ELPS1071>3.0.CO;2-M CASPubMedWeb of Science®Google Scholar
- 28Akyol, I., Acta Biol. Hung. 2007, 58, 105–114.
- 29Nishida, H., Miki, K., Proteins 1996, 26, 32–41.
- 30Rowland, P., Norager, S., Jensen, K. F., Larsen, S., Structure 2000, 8, 1227–1238.
- 31Wadskov-Hansen, S. L. L., Willemoes, M., Martinussen, J., Hammer, K., Neuhard, J., Larsen, S., J. Biol. Chem. 2001, 276, 38002–38009.
- 32Pappas, A., Yang, W. L., Park, T. S., Carman, G. M., J. Biol. Chem. 1998, 273, 15954–15960.
- 33Martinussen, J., Schallert, J., Andersen, B., Hammer, K., J. Bacteriol. 2001, 183, 2785–2794.
- 34Andersen, P. S., Martinussen, J., Hammer, K., J. Bacteriol. 1996, 178, 5005–5012.
- 35Andersen, P. S., Jansen, P. J. G., Hammer, K., J. Bacteriol. 1994, 176, 3975–3982.
- 36Martinussen, J., Hammer, K., J. Bacteriol. 1998, 180, 4380–4386.
- 37Maghnouj, A., Cabral, T. F. D., Stalon, V., Vander Wauven, C., J. Bacteriol. 1998, 180, 6468–6475.
- 38Luthi, E., Baur, H., Gamper, M., Brunner, F., Villeval, D., Mercenier, A., Haas, D., Gene 1990, 87, 37–43.
- 39Galimand, M., Gamper, M., Zimmermann, A., Haas, D., J. Bacteriol. 1991, 173, 1598–1606.
- 40Gamper, M., Zimmermann, A., Haas, D., J. Bacteriol. 1991, 173, 4742–4750.
- 41Chou, L. S., Weimer, B. C., Cutler, R., Int. Dairy J. 2001, 11, 253–258.
- 42Akyol, I., J. Cell Mol. Biol. 2006, 5, 87.