Uncommon Carbon Nanostructures for the Preparation of Electrochemical Immunosensors
Corresponding Author
Paloma Yáñez-Sedeño
Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, 28040- Madrid
Search for more papers by this authorAraceli González-Cortés
Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, 28040- Madrid
Search for more papers by this authorLourdes Agüí
Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, 28040- Madrid
Search for more papers by this authorJosé M. Pingarrón
Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, 28040- Madrid
Search for more papers by this authorCorresponding Author
Paloma Yáñez-Sedeño
Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, 28040- Madrid
Search for more papers by this authorAraceli González-Cortés
Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, 28040- Madrid
Search for more papers by this authorLourdes Agüí
Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, 28040- Madrid
Search for more papers by this authorJosé M. Pingarrón
Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, 28040- Madrid
Search for more papers by this authorAbstract
Electrochemical devices making use of carbon nanomaterials have demonstrated great applicability. Single- or multi-walled nanotubes and graphene have been largely applied to the construction of electrochemical (bio)sensors improving two key aspects in this field: surface nanostructuration allowing the preparation of electrode platforms more conductive, selective and suitable for biomolecules immobilization, and the ability to design suitable strategies for signal amplification. Besides the above mentioned carbon nanomaterials, more recently new carbon nanoforms have appeared as suitable nanostructuration tools. Carbon nanohorns, double-walled carbon nanotubes, fullerene (C60), carbon nanoparticles, and graphene quantum dots are examples of novel nanomaterials whose particular characteristics make them well suited for the construction of bioelectrochemical devices. In this article, the use of these carbon nanomaterials for the development of electrochemical immunosensors is reviewed.
References
- 1S. Zhu, J. Zhang, X. Zhao, H. Wang, G. Xu, J. You, Microchim. Acta, 2014, 181, 445.
- 2L. Shi, X. Liu, W. Niu, H. Li, S. Han, J. Chen, G. Xu, Biosens. Bioelectron. 2009, 24, 1159.
- 3J. Miyawaki, M. Yudasaka, T. Azami, Y. Kubo, S. Iijima, ACS Nano, 2008, 2, 213
- 4H. Tanaka, H. Kanoh, M. El-Merraoui, W. A. Steele, M. Yudasaka, S. Iijima, K. Kaneko, J. Phys. Chem. B, 2004, 108, 17457.
- 5K. Ajima, M. Yudasaka, T. Murakami, A. Maigné, K. Shiba, S. Iijima, Mol. Pharm. 2005, 2, 475.
- 6L. Zhang, A. Gao, Y. Liu, Y. Wang, J. Ma, Electrochim. Acta, 2014 132, 416.
- 7E. Bekyarova, K. Murata, M. Yudasaka, D. Kasuya, S. I. ijima, H. Tanaka, H. Kanoh and K. Kaneko, J. Phys. Chem. B, 2003, 107, 4681.
- 8S. Y. Zhu, H. J. Li, W. X. Niu and G. B. Xu, Biosens. Bioelectron. 2009, 25, 940.
- 9S. Zhu, G. Xu, Nanoscale, 2010, 2, 2538
- 10S. Iijima, M. Yudasaka, R. Yamada, S. Bandow, K. Suenaga, F. Kokai, K. Takahashi, Chem. Phys. Lett. 1999, 309, 165.
- 11H. Isobe, T. Tanaka, R. Maeda, E. Noiri, N. Solin, M. Yudasaka, S. Iijima, E. Nakamura, Angew. Chem. Int. Ed. 2006, 45, 6676.
- 12J. Zhang, J. Lei, C. Xu, L. Ding, H. Ju, Anal. Chem. 2010, 82, 1117.
- 13M. Zhang, M. Yudasaka, K. Ajima, J. Miyawaki, S. Iijima, ACS Nano, 2007, 1, 265.
- 14I. Ojeda, B. Garcinuño, M. Moreno-Guzmán, A. González-Cortés, M. Yudasaka, S. Iijima, F. Langa, P. Yáñez-Sedeño, J. M. Pingarrón, Anal. Chem. 2014, 86, 7749.
- 15H. Dai, L. Gong, S. Zhang, G. Xu, Y. Li, Z. Hong, Y. Lin, Biosens. Bioelectron. 2016, 77, 928.
- 16H. Dai, S. Zhang, L. Gong, Y. Li, G. Xu, Y. Lin, Z. Hong, Biosens. Bioelectron. 2015, 72, 18.
- 17G. Xu, S. Zhang, Q. Zhang, L. Gong, H. Dai, Y. Lin, Sens. Actuators B, 2016, 222 707.
- 18F. Liu, G. Xiang, R. Yuan, X. Chen, F. Luo, D. Jiang, S. Huang, Y. Li, X. Pu, Biosens. Bioelectron. 2014, 60, 210.
- 19F. Liu, G. Xiang, X. Chen, F. Luo, D. Jiang, S. Huang, Y. Li, X. Pu, RSC Adv. 2014, 4, 13934.
- 20F. Yang, J. Han, Y. Zhuo, Z. Yang, Y. Chain, R. Yuan, Biosens. Bioelectron. 2014, 55 360.
- 21C. Zhao, D. Lin, J. Wu, L. Ding, H. Ju, F. Yan, Electroanalysis, 2013, 25, 1044.
- 22C. Zhao, J. Wu, H. Ju, F. Yan, Anal. Chim. Acta, 2014, 847, 37.
- 23K. Wu, H. Qiu, J. Hu, N. Sun, Z. Zhu, M. Li, Z. Shi, Carbon, 2012, 50, 4401.
- 24M. Pumera, Nanoscale Res. Lett., 2007, 2, 87.
- 25A. A. Green, M. C. Hersam, ACS Nano, 2011, 5, 1459.
- 26K. E. Moore, B. S. Flavel, A. V. Ellis, J. G. Shapter, Carbon, 2011, 49, 2639.
- 27A. H. Brozena, J. Mowkowitz, B. Shao, S. Deng, H. Liao, K. J. Gaskell, Y. Wang, J. Am.Chem.Soc. 2010, 132, 3932.
- 28N. Punbusayakul, S. Talapatra, P. M Ajayan, W. Surareungchai, Chem. Central J. 2013, 7, 102.
- 29I. Ojeda, M. Barrejón, L. M. Arellano, A. González-Cortés, P. Yáñez-Sedeño, F. Langa, J. M. Pingarrón, Biosens. Bioelectron. 2015, 74, 29.
- 30S. Pilehvar, K. De Wael, Biosensors, 2015, 5, 712.
- 31S. Afreen, K. Muthoosamy, S. Manickam, U. Hashim, Biosens. Bioelectron. 2015, 63, 354.
- 32S. Pilehvar, K. De Wael, Biosensors, 2015, 5, 712.
- 33V. Biju, Chem. Soc. Rev. 2014, 43, 744.
- 34W. Zhilei, S. Xiulan, L. Zaijun, F. Yinjun, R. Guoxiao, H. Yaru, L. Junkang, Microchim. Acta, 2011, 172, 365.
- 35S. Xiulan, L. Zaijun, C. Yan, W. Zhilei, F. Yinjun, R. Guoxiao, H. Yaru, Electrochim. Acta, 2011, 56, 1117.
- 36M. Mazloum-Ardakani, L. Hosseinzadeh, A. Khoshroo, J. Electroanal. Chem. 2015, 757, 58
- 37Y. Li, L. Fang, P. Cheng, J. Deng, L. Jiang, Biosens. Bioelectron. 2013, 49, 485.
- 38J. Han, Y. Zhuo, Y.-Q. Chai, Y. Xiang, R. Yuan, Anal. Chem. 2015, 87, 1669.
- 39P. Li, W. Zhang, X. Zhou, L. Zhang, Clin. Biochem., 2015, 48, 156.
- 40K. Szot, M. Opallo, Electroanalysis, 2016, 28, 46.
- 41R. Cui, J.-J. Zhu, Electrochim. Acta, 2010, 55, 7814.
- 42H. Fan, Y. Zhang, D. Wu, H. Ma, X. Li, Y. Li, H. Wang, H. Li, B. Du, Q. Wei, Anal. Chim. Acta, 2013, 770, 62.
- 43J. A. Ho, Y. C. Lin, L. S. Wang, K. C. Hwang, P. T. Chou, Anal. Chem. 2009, 81, 1340.
- 44J. Tang, B. Su, D. Tang, G. Chen, Biosens. Bioelectron. 2010, 25, 2657.
- 45S. Huan, L. Yun, M. Xiao, S. Kun, Y. Shi, Biosens. Bioelectron. 2011, 30, 112.
- 46J. Zhou, J. Zhuang, M. Miró, Z. Gao, G. Chen, D. Tang, Biosens. Bioelectron. 2012, 35, 394.
- 47C. Yao, Y. Shin, L. Q. Wang, C. F. Windisch, W. D. Samuels, B. W. Arey, C. Wang, W. M. Risen and G. J. Exarhos, J. Phys. Chem. C, 2007, 111, 15141.
- 48Y. Luo, A. M. Asiri, X. Zhang, G. Yang, D. Du, Y. Lin, RSC Adv. 2014, 4, 54066.
- 49H. Zhao, J. Tian, X. Quan, Coll.Surf. B: Biointerf. 2013, 103, 38.
- 50M. Lin, Y. Liu, Z. Sun, S.i Zhang, Z. Yang, C. Ni, Anal. Chim. Acta, 2012, 722, 100
- 51G. Lai, H. Zhang, A. Yu, H. Ju, Biosens. Bioelectron. 2015, 74, 660
- 52H. Sun, L. Wu, W. Wei, X. Qu, Mater. Today, 2013, 16, 433
- 53J. Tian, H. Zhao, X. Quan, Y. Zhang, H. Yu, S. Chen Sens. Actuators B, 2014, 196, 532.
- 54Y. Zhang, C. Wu, X. Zhou, X. Wu, Y. Yang, H. Wu, S. Guo. J. Zhang, Nanoscale, 2013, 5, 1816.
- 55X. Wang, L. Chen, X. Su, S. Ai, Biosens. Bioelectron. 2013, 47, 171.
- 56W. W. Zhao, Z. Y. Ma, P. P. Yu, X. Y. Dong, J. J. Xu, H. Y. Chen, Anal. Chem. 2012, 84, 917.