Mathematical lipid correction of δ13C and effect of lipid extraction on δ15N of European eel (Anguilla anguilla) muscle
Corresponding Author
Raphaël Lagarde
Centre de Formation et de Recherche sur les Environnements Méditerranéens, Université de Perpignan Via Domitia, Perpignan, France
Centre de Formation et de Recherche sur les Environnements Méditerranéens, CNRS, Perpignan, France
Correspondence
Raphaël Lagarde, Centre de Formation et de Recherche sur les Environnements Méditerranéens, UMR 5110, CNRS, F 66860, Perpignan, France.
Email: [email protected]
Contribution: Conceptualization, Methodology, Software, Investigation, Formal analysis, Funding acquisition, Writing - original draft
Search for more papers by this authorChristophe Menniti
Centre de Formation et de Recherche sur les Environnements Méditerranéens, Université de Perpignan Via Domitia, Perpignan, France
Centre de Formation et de Recherche sur les Environnements Méditerranéens, CNRS, Perpignan, France
Contribution: Methodology, Data curation, Investigation, Writing - review & editing
Search for more papers by this authorNils Teichert
UMR 7208 BOREA (MNHN, CNRS, IRD, SU, UCN, UA), Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques, Paris, France
Station Marine de Dinard, CRESCO, MNHN, Dinard, France
Contribution: Conceptualization, Methodology, Investigation, Writing - review & editing
Search for more papers by this authorElsa Amilhat
Centre de Formation et de Recherche sur les Environnements Méditerranéens, Université de Perpignan Via Domitia, Perpignan, France
Centre de Formation et de Recherche sur les Environnements Méditerranéens, CNRS, Perpignan, France
Contribution: Investigation, Funding acquisition, Writing - review & editing
Search for more papers by this authorElisabeth Faliex
Centre de Formation et de Recherche sur les Environnements Méditerranéens, Université de Perpignan Via Domitia, Perpignan, France
Centre de Formation et de Recherche sur les Environnements Méditerranéens, CNRS, Perpignan, France
Contribution: Investigation, Funding acquisition, Writing - review & editing
Search for more papers by this authorSarah Nahon
MARBEC, Université de Montpellier, CNRS, Ifremer, IRD, INRAE, Sète, France
Contribution: Conceptualization, Investigation, Validation, Data curation, Writing - review & editing
Search for more papers by this authorCorresponding Author
Raphaël Lagarde
Centre de Formation et de Recherche sur les Environnements Méditerranéens, Université de Perpignan Via Domitia, Perpignan, France
Centre de Formation et de Recherche sur les Environnements Méditerranéens, CNRS, Perpignan, France
Correspondence
Raphaël Lagarde, Centre de Formation et de Recherche sur les Environnements Méditerranéens, UMR 5110, CNRS, F 66860, Perpignan, France.
Email: [email protected]
Contribution: Conceptualization, Methodology, Software, Investigation, Formal analysis, Funding acquisition, Writing - original draft
Search for more papers by this authorChristophe Menniti
Centre de Formation et de Recherche sur les Environnements Méditerranéens, Université de Perpignan Via Domitia, Perpignan, France
Centre de Formation et de Recherche sur les Environnements Méditerranéens, CNRS, Perpignan, France
Contribution: Methodology, Data curation, Investigation, Writing - review & editing
Search for more papers by this authorNils Teichert
UMR 7208 BOREA (MNHN, CNRS, IRD, SU, UCN, UA), Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques, Paris, France
Station Marine de Dinard, CRESCO, MNHN, Dinard, France
Contribution: Conceptualization, Methodology, Investigation, Writing - review & editing
Search for more papers by this authorElsa Amilhat
Centre de Formation et de Recherche sur les Environnements Méditerranéens, Université de Perpignan Via Domitia, Perpignan, France
Centre de Formation et de Recherche sur les Environnements Méditerranéens, CNRS, Perpignan, France
Contribution: Investigation, Funding acquisition, Writing - review & editing
Search for more papers by this authorElisabeth Faliex
Centre de Formation et de Recherche sur les Environnements Méditerranéens, Université de Perpignan Via Domitia, Perpignan, France
Centre de Formation et de Recherche sur les Environnements Méditerranéens, CNRS, Perpignan, France
Contribution: Investigation, Funding acquisition, Writing - review & editing
Search for more papers by this authorSarah Nahon
MARBEC, Université de Montpellier, CNRS, Ifremer, IRD, INRAE, Sète, France
Contribution: Conceptualization, Investigation, Validation, Data curation, Writing - review & editing
Search for more papers by this authorFunding information :
This study received financial support from the French Ministry of Ecology, Sustainable Development and Energy (MEDDE). Some samples were collected as part of the Sélune River restoration program (https://programme-selune.com), which is supported by funding from the Seine-Normandy Water Agency (AESN) and the French Biodiversity Agency (OFB).
Abstract
Rationale
Carbon (δ13C) and nitrogen (δ15N) stable isotope analysis is a powerful tool to investigate diverse questions in fish ecology, such as their trophic position or migration strategies. These questions appear particularly important to protect endangered European eel. However, elevated lipid content in eel muscle can bias δ13C values, as lipids are 13C-depleted compared to proteins and carbohydrates.
Methods
We measured δ13C and δ15N values of bulk and lipid-free samples of eel muscle. Lipid-free samples were obtained after the extraction of lipids with cyclohexane. Lipid-corrected δ13C values, using five different mathematical equations based on bulk δ13C values, were compared to lipid-free δ13C values. We also evaluated the effect of lipid extraction on δ15N values. The analyses were based on linear regression performed on 333 individuals captured in nine lagoons and four rivers.
Results
Independently to the capture site or habitat (river or lagoon), the predicted lipid-corrected δ13C values were highly consistent with the measured lipid-free δ13C values (R2 > 0.90). The application of specific equations for each habitat or capture site only slightly increases these R2 (1.5% or less). The lipid extraction treatment significantly decreased by 0.2‰ the δ15N values compared to bulk samples.
Conclusions
Given the excellent prediction of mathematical equations and the small decrease of δ15N values after lipids extraction, we propose to use mathematical correction to estimate δ13C values of eel muscle. As the habitats or sites did not strongly influence the results, the coefficients from our study can be applied to other studies on European eel.
Open Research
PEER REVIEW
The peer review history for this article is available at https://www.webofscience.com/api/gateway/wos/peer-review/10.1002/rcm.9924.
DATA AVAILABILITY STATEMENT
The data that supports the findings of this study are available in the supplementary material of this article (Table S5).
Supporting Information
Filename | Description |
---|---|
rcm9924-sup-0001-Table_S1.docxWord 2007 document , 15.3 KB | Table S1 Summary of the mean ± standard deviation (range) of eel total length (TL) and body weight (BW). The habitat type, the years of captured and the number of eels captured (N) are specified for each site. |
rcm9924-sup-0002-Table_S2.docxWord 2007 document , 20 KB | Table S2 Summary of the mean ± standard deviation (range) for bulk and lipid-free δ13C, δ15N and C:N ratios for the eels captured from different sites. |
rcm9924-sup-0003-Table_S3.docxWord 2007 document , 17 KB | Table S3 Summary of the linear models between δ13Clipid-free and δ13Ccorrected estimated from the δ13Cbulk with the five different mathematical equations. The proportion of the total deviance explained by each variable (% of deviance) is specified. The P-values (P) test the hypothesis that the intercept or the coefficient of each variable is not different from zero or one (in bracket), respectively. |
rcm9924-sup-0004-Figure S1.docxWord 2007 document , 60.1 KB | Figure S1 δ13C values of the lipid-free samples (δ13Clipid-free) compared to the bulk samples (δ13Cbulk). (N) is the number of eels. |
rcm9924-sup-0004-Data_S1.xlsxExcel 2007 spreadsheet , 38.9 KB | Data S1. Supporting Information. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1Vizzini S, Savona B, Chi TD, Mazzola A. Spatial variability of stable carbon and nitrogen isotope ratios in a Mediterranean coastal lagoon. Hydrobiologia. 2005; 550(1): 73-82. doi:10.1007/s10750-005-4364-2
- 2Bearhop S, Adams CE, Waldron S, Fuller RA, Macleod H. Determining trophic niche width: a novel approach using stable isotope analysis. J Anim Ecol. 2004; 73(5): 1007-1012. doi:10.1111/j.0021-8790.2004.00861.x
- 3Teichert N, Lizé A, Lepage M, et al. Hydro-morphological features and functional structure of fish assemblages mediate species isotopic niches in estuaries. Estuar Coast Shelf Sci. 2024; 299:108686. doi:10.1016/j.ecss.2024.108686
- 4Reis-Santos P, Tanner SE, França S, Vasconcelos RP, Gillanders BM, Cabral HN. Connectivity within estuaries: an otolith chemistry and muscle stable isotope approach. Ocean Coast Manag. 2015; 118: 51-59. doi:10.1016/j.ocecoaman.2015.04.012
- 5Teichert N, Lizé A, Tabouret H, et al European flounder foraging movements in an estuarine nursery seascape inferred from otolith microchemistry and stable isotopes. Mar Environ Res 2022; 182: 105797. 10.1016/j.marenvres.2022.105797
- 6Lizé A, Teichert N, Roussel JM, Acou A, Feunteun E, Carpentier A. Isotopic niches of diadromous fishes inform on interspecific competition in an obstructed catchment. Front Ecol Evol. 2023; 11. Accessed November 29, 2023. https://www.frontiersin.org/articles/10.3389/fevo.2023.1242452
10.3389/fevo.2023.1242452 Google Scholar
- 7Brodeur RD, Smith BE, McBride RS, Heintz R, Farley E. New perspectives on the feeding ecology and trophic dynamics of fishes. Environ Biol Fishes. 2017; 100(4): 293-297. doi:10.1007/s10641-017-0594-1
10.1007/s10641-017-0594-1 Google Scholar
- 8Capoccioni F, Leone C, Giustini F, et al. δ13C and δ15N in yellow and silver eels (Anguilla anguilla, 1758) from different Mediterranean local stocks and their variation with body size and growth. Mar Freshw Res. Published online March 22. 2021. doi:10.1071/MF20144
10.1071/MF20144 Google Scholar
- 9Cabana G, Rasmussen JB. Modelling food chain structure and contaminant bioaccumulation using stable nitrogen isotopes. Nature. 1994; 372(6503): 255-257. doi:10.1038/372255a0
- 10Welicky RL, Demopoulos AWJ, Sikkel PC. Host-dependent differences in resource use associated with Anilocra spp. parasitism in two coral reef fishes, as revealed by stable carbon and nitrogen isotope analyses. Mar Ecol. 2017; 38(2):e12413. doi:10.1111/maec.12413
- 11DeNiro MJ, Epstein S. Mechanism of carbon isotope fractionation associated with lipid synthesis. Science. 1977; 197(4300): 261-263. doi:10.1126/science.327543
- 12Folch JML, Stanley GHS. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957; 226(1): 497-509. doi:10.1016/S0021-9258(18)64849-5
- 13Chouvelon T, Spitz J, Cherel Y, et al. Inter-specific and ontogenic differences in δ13C and δ15N values and Hg and Cd concentrations in cephalopods. Mar Ecol Prog Ser 2011; 433: 107–120. 10.3354/meps09159
- 14Bodin N, Budzinski H, Le Ménach K, Tapie N. ASE extraction method for simultaneous carbon and nitrogen stable isotope analysis in soft tissues of aquatic organisms. Anal Chim Acta. 2009; 643(1): 54-60. doi:10.1016/j.aca.2009.03.048
- 15Sotiropoulos MA, Tonn WM, Wassenaar LI. Effects of lipid extraction on stable carbon and nitrogen isotope analyses of fish tissues: potential consequences for food web studies. Ecol Freshw Fish. 2004; 13(3): 155-160. doi:10.1111/j.1600-0633.2004.00056.x
- 16Post DM, Layman CA, Arrington DA, Takimoto G, Quattrochi J, Montaña CG. Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia. 2007; 152(1): 179-189. doi:10.1007/s00442-006-0630-x
- 17Logan JM, Jardine TD, Miller TJ, Bunn SE, Cunjak RA, Lutcavage ME. Lipid corrections in carbon and nitrogen stable isotope analyses: comparison of chemical extraction and modelling methods. J Anim Ecol. 2008; 77(4): 838-846. doi:10.1111/j.1365-2656.2008.01394.x
- 18Daverat F, Limburg KE, Thibault I, et al. Phenotypic plasticity of habitat use by three temperate eel species, Anguilla anguilla, A. japonica and A. rostrata. Mar Ecol Prog Ser 2006; 308: 231–241. 10.3354/meps308231
- 19Johs S. The breeding places of the eel. Philos Trans R Soc. 1923; 211(382–390): 179-208. doi:10.1098/rstb.1923.0004
10.1098/rstb.1923.0004 Google Scholar
- 20Wright RM, Piper AT, Aarestrup K, et al. First direct evidence of adult European eels migrating to their breeding place in the Sargasso Sea. Sci Rep 2022; 12(1): 15362. 10.1038/s41598-022-19248-8
- 21Drouineau H, Durif C, Castonguay M, et al. Freshwater eels: a symbol of the effects of global change. Fish Fish. 2018; 19(5): 903-930. doi:10.1111/faf.12300
- 22 ICES. Report of the Joint EIFAAC/ICES/GFCM Working Group on Eels (WGEEL). ICES Scientific Reports; 2023. doi:10.17895/ices.pub.24420868.v1
10.17895/ices.pub.24420868.v1 Google Scholar
- 23Jacoby D, Gollock M. Anguilla anguilla The IUCN Red List of Threatened Species. Published online 2014. Accessed April 23, 2019. https://www.iucnredlist.org/en
- 24Pike C, Crook V, Gollock M. IUCN red list of threatened species: Anguilla anguilla. IUCN Red List of Threatened Species. Published online 2020. doi:10.2305/IUCN.UK.2020-2.RLTS.T60344A152845178.en
10.2305/IUCN.UK.2020?2.RLTS.T60344A152845178.en Google Scholar
- 25 European Council. Council Regulation (EC) No 1100/2007 of 18 September 2007 establishing measures for the recovery of the stock of European eel. Published online 2007.
- 26Righton D, Piper A, Aarestrup K, et al. Important questions to progress science and sustainable management of anguillid eels. Fish Fish. 2021; n/a(n/a). doi:10.1111/faf.12549
10.1111/faf.12549 Google Scholar
- 27Durif CMF, Arts M, Bertolini F, et al. The evolving story of catadromy in the European eel (Anguilla anguilla). ICES J Mar Sci. Published online September 27. 2023;fsad149. doi:10.1093/icesjms/fsad149
10.1093/icesjms/fsad149 Google Scholar
- 28Boëtius I, Boëtius J. Lipid and protein content in Anguilla anguilla during growth and starvation. Dana. 1985; 4: 1-17.
- 29Amilhat E, Fazio G, Simon G, et al. Silver European eels health in Mediterranean habitats. Ecol Freshw Fish. 2014; 23(1): 49-64. doi:10.1111/eff.12077
- 30Capoccioni F, Contò M, Failla S, Cataudella S, Ciccotti E. Fatty acid profiles of migrating female silver eel from Mediterranean coastal lagoons as integrative descriptors of spawners biological quality. Estuar Coast Shelf Sci. 2018; 210: 87-97. doi:10.1016/j.ecss.2018.06.017
- 31Boardman RM, Pinder AC, Piper AT, Roberts CG, Wright RM, Britton JR. Variability in the duration and timing of the estuarine to freshwater transition of critically endangered European eel Anguilla anguilla. Aquatic Sci. 2023; 86(1): 18. doi:10.1007/s00027-023-01033-y
10.1007/s00027-023-01033-y Google Scholar
- 32Sardenne F, Raynon T. Munaron JM, et al lipid-correction models for δ13C values across small pelagic fishes (Clupeiformes) from the Atlantic Ocean. Mar Environ Res. 2023; 192: 106213. doi:10.1016/j.marenvres.2023.106213
- 33Williamson MJ, Jacoby DMP, Piper AT. The drivers of anguillid eel movement in lentic water bodies: a systematic map. Rev Fish Biol Fish. Published online January 9. 2023. doi:10.1007/s11160-022-09751-6
10.1007/s11160-022-09751-6 Google Scholar
- 34Denis J, Rabhi K, Loc'h FL, et al. Role of estuarine habitats for the feeding ecology of the European eel (Anguilla anguilla L.). PLoS ONE. 2022; 17(7):e0270348. doi:10.1371/journal.pone.0270348
- 35Chouvelon T, Chappuis A, Bustamante P, et al. Trophic ecology of European sardine Sardina pilchardus and European anchovy Engraulis encrasicolus in the Bay of Biscay (north-east Atlantic) inferred from δ13C and δ15N values of fish and identified mesozooplanktonic organisms. J Sea Res. 2014; 85: 277-291. doi:10.1016/j.seares.2013.05.011
- 36Kiljunen M, Grey J, Sinisalo T, Harrod C, Immonen H, Jones RI. A revised model for lipid-normalizing δ13C values from aquatic organisms, with implications for isotope mixing models. J Appl Ecol. 2006; 43(6): 1213-1222. doi:10.1111/j.1365-2664.2006.01224.x
- 37Shipley ON, Olin JA, NVC P, et al. Polar compounds preclude mathematical lipid correction of carbon stable isotopes in deep-water sharks. J Exp Mar Biol Ecol. 2017; 494: 69-74. doi:10.1016/j.jembe.2017.05.002
- 38 R Core Team. R: a Language and Environment for Statistical Computing. R Foundation for Statistical Computing; 2021. https://www.r-project.org/
- 39McConnaughey T, McRoy CP. Food-web structure and the fractionation of carbon isotopes in the Bering sea. Mar Biol. 1979; 53(3): 257-262. doi:10.1007/BF00952434
- 40Sweeting CJ, Polunin NVC, Jennings S. Effects of chemical lipid extraction and arithmetic lipid correction on stable isotope ratios of fish tissues. Rapid Commun Mass Spectrom. 2006; 20(4): 595-601. doi:10.1002/rcm.2347
- 41Cucherousset J, Acou A, Blanchet S, Britton JR, Beaumont WRC, Gozlan RE. Fitness consequences of individual specialisation in resource use and trophic morphology in European eels. Oecologia. 2011; 167(1): 75-84. doi:10.1007/s00442-011-1974-4
- 42Barry J, Newton M, Dodd JA, Evans D, Newton J, Adams CE. The effect of foraging and ontogeny on the prevalence and intensity of the invasive parasite Anguillicola crassus in the European eel Anguilla anguilla. J Fish Dis. 2017; 40(9): 1213-1222. doi:10.1111/jfd.12596
- 43Parzanini C, Arts MT, Power M, et al. Trophic ecology of the European eel (Anguilla anguilla) across different salinity habitats inferred from fatty acid and stable isotope analysis. Can J Fish Aquat Sci. 2021; 78(11): 1721-1731. doi:10.1139/cjfas-2020-0432
- 44van der Merwe A, Myburgh A, Hall G, Kaiser A, Woodborne S. Validation of lipid extraction and correction methods for stable isotope analysis of freshwater food webs in southern Africa. Afr J Aquatic Sci. 2022; 47(4): 462-473. doi:10.2989/16085914.2022.2109576
10.2989/16085914.2022.2109576 Google Scholar
- 45Boardman RM, Pinder AC, Piper AT, Roberts CG, Wright RM, Britton JR. Non-lethal sampling for the stable isotope analysis of the critically endangered European eel Anguilla anguilla: how fin and mucus compare to dorsal muscle. J Fish Biol. 2022; n/a(n/a). doi:10.1111/jfb.14992
10.1111/jfb.14992 Google Scholar