Arabidopsis thaliana root cell wall proteomics: Increasing the proteome coverage using a combinatorial peptide ligand library and description of unexpected Hyp in peroxidase amino acid sequences
Huan Nguyen-Kim
Laboratoire de Recherche en Sciences Végétales, UMR 5546, UPS, Université de Toulouse, BP 42617 Castanet-Tolosan, France
UMR 5546, CNRS, BP 42617 Castanet-Tolosan, France
Search for more papers by this authorHélène San Clemente
Laboratoire de Recherche en Sciences Végétales, UMR 5546, UPS, Université de Toulouse, BP 42617 Castanet-Tolosan, France
UMR 5546, CNRS, BP 42617 Castanet-Tolosan, France
Search for more papers by this authorThierry Balliau
CNRS, PAPPSO, UMR 0320/UMR 8120 Génétique Végétale Quantitative et Evolution, Le Moulon, Gif sur Yvette, France
INRA, PAPPSO, UMR 0320/UMR 8120 Génétique Végétale Quantitative et Evolution, Le Moulon, Gif sur Yvette, France
Search for more papers by this authorMichel Zivy
CNRS, PAPPSO, UMR 0320/UMR 8120 Génétique Végétale Quantitative et Evolution, Le Moulon, Gif sur Yvette, France
INRA, PAPPSO, UMR 0320/UMR 8120 Génétique Végétale Quantitative et Evolution, Le Moulon, Gif sur Yvette, France
Search for more papers by this authorChristophe Dunand
Laboratoire de Recherche en Sciences Végétales, UMR 5546, UPS, Université de Toulouse, BP 42617 Castanet-Tolosan, France
UMR 5546, CNRS, BP 42617 Castanet-Tolosan, France
Search for more papers by this authorCécile Albenne
Laboratoire de Recherche en Sciences Végétales, UMR 5546, UPS, Université de Toulouse, BP 42617 Castanet-Tolosan, France
UMR 5546, CNRS, BP 42617 Castanet-Tolosan, France
Search for more papers by this authorCorresponding Author
Elisabeth Jamet
Laboratoire de Recherche en Sciences Végétales, UMR 5546, UPS, Université de Toulouse, BP 42617 Castanet-Tolosan, France
UMR 5546, CNRS, BP 42617 Castanet-Tolosan, France
Correspondence: Dr. Elisabeth Jamet, Laboratoire de Recherche en Sciences Végétales, UMR 5546, UPS/CNRS, Université de Toulouse, BP 42617, F 31326, Castanet-Tolosan, France
E-mail: [email protected]
Fax: +33(0)534-32-38-02
Search for more papers by this authorHuan Nguyen-Kim
Laboratoire de Recherche en Sciences Végétales, UMR 5546, UPS, Université de Toulouse, BP 42617 Castanet-Tolosan, France
UMR 5546, CNRS, BP 42617 Castanet-Tolosan, France
Search for more papers by this authorHélène San Clemente
Laboratoire de Recherche en Sciences Végétales, UMR 5546, UPS, Université de Toulouse, BP 42617 Castanet-Tolosan, France
UMR 5546, CNRS, BP 42617 Castanet-Tolosan, France
Search for more papers by this authorThierry Balliau
CNRS, PAPPSO, UMR 0320/UMR 8120 Génétique Végétale Quantitative et Evolution, Le Moulon, Gif sur Yvette, France
INRA, PAPPSO, UMR 0320/UMR 8120 Génétique Végétale Quantitative et Evolution, Le Moulon, Gif sur Yvette, France
Search for more papers by this authorMichel Zivy
CNRS, PAPPSO, UMR 0320/UMR 8120 Génétique Végétale Quantitative et Evolution, Le Moulon, Gif sur Yvette, France
INRA, PAPPSO, UMR 0320/UMR 8120 Génétique Végétale Quantitative et Evolution, Le Moulon, Gif sur Yvette, France
Search for more papers by this authorChristophe Dunand
Laboratoire de Recherche en Sciences Végétales, UMR 5546, UPS, Université de Toulouse, BP 42617 Castanet-Tolosan, France
UMR 5546, CNRS, BP 42617 Castanet-Tolosan, France
Search for more papers by this authorCécile Albenne
Laboratoire de Recherche en Sciences Végétales, UMR 5546, UPS, Université de Toulouse, BP 42617 Castanet-Tolosan, France
UMR 5546, CNRS, BP 42617 Castanet-Tolosan, France
Search for more papers by this authorCorresponding Author
Elisabeth Jamet
Laboratoire de Recherche en Sciences Végétales, UMR 5546, UPS, Université de Toulouse, BP 42617 Castanet-Tolosan, France
UMR 5546, CNRS, BP 42617 Castanet-Tolosan, France
Correspondence: Dr. Elisabeth Jamet, Laboratoire de Recherche en Sciences Végétales, UMR 5546, UPS/CNRS, Université de Toulouse, BP 42617, F 31326, Castanet-Tolosan, France
E-mail: [email protected]
Fax: +33(0)534-32-38-02
Search for more papers by this authorColour Online: See the article online to view Figs. 1–4 in colour.
Abstract
Plant cell walls (CWs) contain a large proportion of polysaccharides (90–95% of CW mass) and proteins (5–10%) that play major roles in CW plasticity during development and in response to environmental cues. Here, we present CW proteomics data of Arabidopsis thaliana roots. Plants were cultivated in hydroponic conditions. CW protein (CWP) extracts were prepared and analyzed in two different ways in order to enlarge the coverage of the root CW proteome: proteins were analyzed either directly or following an affinity chromatography on a combinatorial peptide ligand library (CPLL) to reduce the concentration dynamic range. Proteins were identified by LC-MS/MS and bioinformatics. Altogether, 424 proteins having predicted signal peptides have been identified (CWPs). CPLL permitted to identify low-abundant CWPs never described before, thus enlarging the coverage of the root CW proteome. The number of oxidoreductases is particularly high and includes a large collection of class III peroxidases (CIII Prxs; 38 out of the 73 A. thaliana CIII Prxs). For the first time, hydroxyproline residues were localized at conserved positions in CIII Prx amino acid sequences.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
pmic12193-sup-0001-SupInfo.zip8.5 MB | Supplementary Material |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
5 References
- 1Carpita, N. C., Gibeaut, D. M., Structural models of primary cell walls in flowering plants, consistency of molecular structure with the physical properties of the walls during growth. Plant J. 1993, 3, 1–30.
- 2Déjardin, A., Laurans, F., Arnaud, D., Breton, C. et al., Wood formation in Angiosperms. CR Biol. 2010, 333, 325–334.
- 3Lee, K., Marcus, S., Knox, J., Cell wall biology: perspectives from cell wall imaging. Mol. Plant 2011, 4, 212–219.
- 4Roppolo, D., Geldner, N., Membrane and walls: who is master, who is servant? Curr. Opin. Plant Biol. 2012, 15, 608–617.
- 5Knox, J. P., Revealing the structural and functional diversity of plant cell walls. Curr. Opin. Plant Biol. 2008, 11, 308–313.
- 6Sampedro, J., Cosgrove, D. J., The expansin superfamily. Genome Biol. 2005, 6, 242.
- 7Sénéchal, F., Wattier, C., Rustérucci, C., Pelloux, J., Homogalacturonan-modifying enzymes: structure, expression, and roles in plants. J. Exp. Bot. 2014, 25, 5125–5160.
- 8Francoz, E., Ranocha, P., Nguyen-Kim, H., Jamet, E. et al., Roles of cell wall peroxidases in plant development. Phytochemistry 2015, 112, 15–21.
- 9Albenne, C., Canut, H., Jamet, E., Plant cell wall proteomics: the leadership of Arabidopsis thaliana. Front. Plant Sci. 2013, 4, 111.
- 10Albenne, C., Canut, H., Hoffmann, L., Jamet, E., Plant cell wall proteins: a large body of data, but what about runaways? Proteomes 2014, 2, 224–242.
- 11Francin-Allami, M., Merah, K., Albenne, C., Rogniaux, H. et al., Cell wall proteomics of Brachypodium distachyon grains: a focus on cell wall remodeling proteins. Proteomics 2015, 15, 2296–2306.
- 12Chen, Y., Ye, D., Held, M. A., Cannon, M. C. et al., Identification of the abundant hydroxyproline-rich glycoproteins in the root walls of wild-type Arabidopsis, an ext3 mutant line, and its phenotypic revertant. Plants 2015, 4, 85–111.
- 13Corthals, G. L., Wasinger, V. C., Hochstrasser, D. F., Sanchez, J. C., The dynamic range of protein expression: a challenge for proteomic research. Electrophoresis 2000, 21, 1104–1115.
10.1002/(SICI)1522-2683(20000401)21:6<1104::AID-ELPS1104>3.0.CO;2-C CASPubMedWeb of Science®Google Scholar
- 14Righetti, P. G., Boschetti, E., The ProteoMiner and the FortyNiners: searching for gold nuggets in the proteomic arena. Mass Spectrom. Rev. 2008, 27, 596–608.
- 15Righetti, P. G., Fasoli, E., Boschetti, E., Combinatorial peptide ligand libraries: the conquest of the ‘hidden proteome’ advances at great strides. Electrophoresis 2011, 32, 960–966.
- 16Boschetti, E., Chung, M. C., Righetti, P. G., “The quest for biomarkers”: are we on the right technical track? Proteomics Clin. Appl. 2012, 6, 22–41.
- 17Fröhlich, A., Lindermayr, C., Deep insights into the plant proteome by pretreatment with combinatorial hexapeptide ligand libraries. J. Proteomics 2011, 74, 1182–1189.
- 18Fröhlich, A., Gaupels, F., Sarioglu, H., Holzmeister, C. et al., Looking deep inside: detection of low-abundance proteins in leaf extracts of Arabidopsis and phloem exudates of pumpkin. Plant Physiol. 2012, 159, 902–914.
- 19Fasoli, E., D'Amato, A., Kravchuk, A. V., Boschetti, E. et al., Popeye strikes again: the deep proteome of spinach leaves. J. Proteomics 2010, 74, 127–136.
- 20Zhang, L., Zhu, W., Zhang, Y., Yang, B. et al., Proteomics analysis of Mahonia bealei leaves with induction of alkaloids via combinatorial peptide ligand libraries. J. Proteomics 2014, 14, 59–71.
- 21Esteve, C., D'Amato, A., Marina, M. L., García, M. C. et al., Identification of olive (Olea europaea) seed and pulp proteins by nLC-MS/MS via combinatorial peptide ligand libraries. J. Proteomics 2012, 75, 2396–2403.
- 22D'Amato, A., Bachi, A., Fasoli, E., Boschetti, E. et al., In-depth exploration of Hevea brasiliensis latex proteome and "hidden allergens" via combinatorial peptide ligand libraries. J. Proteomics 2010, 73, 1368–1380.
- 23Capriotti, A. L., Caruso, G., Cavaliere, C., Foglia, P. et al., Proteome investigation of the non-model plant pomegranate (Punica granatum L.). Anal. Bioanal. Chem. 2013, 405, 9301–9309.
- 24Fasoli, E., Righetti, P. G., The peel and pulp of mango fruit: a proteomic samba. Biochim. Biophys. Acta 2013, 1834, 2539–2545.
- 25Esteve, C., D'Amato, A., Marina, M. L., García, M. C., Righetti, P. G., Identification of avocado (Persea americana) pulp proteins by nano-LC-MS/MS via combinatorial peptide ligand libraries. Electrophoresis 2012, 33, 2799–2805.
- 26Esteve, C., D'Amato, A., Marina, M. L., García, M. C., Righetti, P. G., In-depth proteomic analysis of banana (Musa spp.) fruit with combinatorial peptide ligand libraries. Electrophoresis 2013, 34, 207–214.
- 27Faye, L., Boulaflous, A., Benchabane, M., Gomord, V., Michaud, D., Protein modifications in the plant secretory pathway: current status and practical implications in molecular pharming. Vaccine 2005, 23, 1770–1778.
- 28Velasquez, S. M., Salgado Salter, J., Petersen, B. L., Estevez, J. M., Recent advances on the post-translational modifications of EXTs and their roles in plant cell walls. Front. Plant Sci. 2012, 3, 93.
- 29Kieliszewski, M. J., The latest hype on Hyp-O-glycosylation codes. Phytochemistry 2001, 57, 319–323.
- 30Tan, L., Qiu, F., Lamport, D. T., Kieliszewski, M. J., Structure of a hydroxyproline (Hyp)-arabinogalactan polysaccharide from repetitive Ala-Hyp expressed in transgenic Nicotiana tabacum. J. Biol. Chem. 2004, 279, 13156–13165.
- 31Estevez, J. M., Kieliszewski, M. J., Khitrov, N., Somerville, C., Characterization of synthetic hydroxyproline-rich proteoglycans with arabinogalactan protein and extensin motifs in Arabidopsis. Plant Physiol. 2006, 142, 458–470.
- 32Tan, L., Varnai, P., Lamport, D. T., Yuan, C. et al., Plant O-hydroxyproline arabinogalactans are composed of repeating trigalactosyl subunits with short bifurcated side chains. J. Biol. Chem. 2010, 285, 24575–24583.
- 33Tryfona, T., Liang, H. C., Kotake, T., Tsumuraya, Y. et al., Structural characterization of Arabidopsis leaf arabinogalactan polysaccharides. Plant Physiol. 2012, 160, 563–666.
- 34Léonard, R., Petersen, B. O., Himly, M., Kaar, W. et al., Two novel types of O-glycans on the mugwort pollen allergen Art v 1 and their role in antibody binding. J. Biol. Chem. 2005, 280, 7932–7940.
- 35Hijazi, M., Durand, J., Pichereaux, C., Pont, F. et al., Characterization of the arabinogalactan protein 31 (AGP31) of Arabidopsis thaliana: new advances on the Hyp-O-glycosylation of the pro-rich domain. J. Biol. Chem. 2012, 287, 9623–9632.
- 36Hijazi, M., Velasquez, S., Jamet, E., Estevez, J., Albenne, C., An update on post-translational modifications of hydroxyproline-rich glycoproteins: toward a model highlighting their contribution to plant cell wall architecture. Front. Plant Sci. 2014, 5, 395.
- 37 The Arabidopsis Genome Initiative, Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 2000, 408, 796–805.
- 38Douché, T., San Clemente, H., Burlat, V., Roujol, D. et al., Brachypodium distachyon as a model plant toward improved biofuel crops: search for secreted proteins involved in biogenesis and disassembly of cell wall polymers. Proteomics 2013, 13, 2438–2454.
- 39Jung, Y. H., Jeong, S. H., Kim, S. H., Singh, R. et al., Systematic secretome analyses of rice leaf and seed callus suspension-cultured cells: workflow development and establishment of high-density two-dimensional gel reference maps. J. Proteome Res. 2008, 7, 5187–5210.
- 40Cho, W. K., Chen, X. Y., Chu, H., Rim, Y. et al., The proteomic analysis of the secretome of rice calli. Physiol. Plant. 2009, 135, 331–341.
- 41Chen, X. Y., Kim, S. T., Cho, W. K., Rim, Y. et al., Proteomics of weakly bound cell wall proteins in rice calli. J. Plant Physiol. 2008, 166, 665–685.
- 42San Clemente, H., Jamet, E., WallProtDB, a database resource for plant cell wall proteomics. Plant Methods 2015, 11, 2.
- 43Boudart, G., Jamet, E., Rossignol, M., Lafitte, C. et al., Cell wall proteins in apoplastic fluids of Arabidopsis thaliana rosettes: identification by mass spectrometry and bioinformatics. Proteomics 2005, 5, 212–221.
- 44Haslam, R. P., Downie, A. L., Raventon, M., Gallardo, K. et al., The assessment of enriched apoplastic extracts using proteomic approaches. Ann. Appl. Biol. 2003, 143, 81–91.
- 45Minic, Z., Jamet, E., Negroni, L., der Garabedian, P. A. et al., A sub-proteome of Arabidopsis thaliana trapped on Concanavalin A is enriched in cell wall glycoside hydrolases. J. Exp. Bot. 2007, 58, 2503–2512.
- 46Pechanova, O., Hsu, C. Y., Adams, J. P., Pechan, T. et al., Apoplast proteome reveals that extracellular matrix contributes to multistress response in poplar. BMC Genomics 2010, 11, 674.
- 47Lim, S., Chisholm, K., Coffin, R. H., Peters, R. D. et al., Protein profiling in potato (Solanum tuberosum L.) leaf tissues by differential centrifugation. J. Proteome Res. 2012, 11, 2594–2601.
- 48Basu, U., Francis, J. L., Whittal, R. W., Stephens, J. L. et al., Extracellular proteomes of Arabidopsis thaliana and Brassica napus roots: analysis and comparison by MUdPIT and LC-MS/MS. Plant Soil 2006, 286, 357–376.
- 49Zhou, L., Bokhari, S. A., Dong, C. J., Liu, J. Y., Comparative proteomics analysis of the root apoplasts of rice seedlings in response to hydrogen peroxide. PLoS One 2011, 6, e16723.
- 50Feiz, L., Irshad, M., Pont-Lezica, R. F., Canut, H., Jamet, E., Evaluation of cell wall preparations for proteomics: a new procedure for purifying cell walls from Arabidopsis hypocotyls. Plant Methods 2006, 2, 10.
- 51Irshad, M., Canut, H., Borderies, G., Pont-Lezica, R., Jamet, E., A new picture of cell wall protein dynamics in elongating cells of Arabidopsis thaliana: confirmed actors and newcomers. BMC Plant Biol. 2008, 8, 94.
- 52Bradford, M. M., Rapid and sensitive method for quantification of microgram quantities of protein utilizing principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254.
- 53Laemmli, U. K., Cleavage of the structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227, 680–685.
- 54Craig, R., Beavis, R., TANDEM: matching proteins with tandem mass spectra. Bioinformatics 2004, 20, 1466–1467.
- 55San Clemente, H., Pont-Lezica, R., Jamet, E., Bioinformatics as a tool for assessing the quality of sub-cellular proteomic strategies and inferring functions of proteins: plant cell wall proteomics as a test case. Bioinform. Biol. Insights 2009, 3, 15–28.
- 56Fawal, N., Li, Q., Savelli, B., Brette, M. et al., PeroxiBase: a database for large-scale evolutionary analysis of peroxidases. Nucleic Acids Res. 2003, 41, D441–D444.
- 57Thompson, J. D., Gibson, T. J., Higgins, D. G., Multiple sequence alignment using ClustalW and ClustalX. Curr. Protoc. Bioinformatics 2002, Chapter 2, Unit 2.3.
- 58Crooks, G. E., Hon, G., Chandonia, J. M., Brenner, S. E., WebLogo: a sequence logo generator. Genome Res. 2004, 14, 1188–1190.
- 59Sigrist, C. J. A., de Castro, E., Cerutti, L., Cuche, B. A. et al., New and continuing developments at PROSITE. Nucleic Acids Res. 2013, 41, D344–D347.
- 60Finn, R. D., Bateman, A., Clements, P., Coggill, P. et al., The Pfam protein families database. Nucleic Acids Res. 2014, 42, D222–D230.
- 61Jones, P., Binns, D., Chang, H. Y., Fraser, M. et al., InterProScan 5: genome-scale protein function classification. Bioinformatics 2014, 30, 1236–1240.
- 62Tognolli, M., Penel, C., Greppin, H., Simon, P., Analysis and expression of the class III peroxidase large gene family in Arabidopsis thaliana. Gene 2002, 288, 129–138.
- 63Schuller, D. J., Ban, N., Huystee, R. B., McPherson, A., Poulos, T. L., The crystal structure of peanut peroxidase. Structure 1996, 4, 311–321.
- 64Watanabe, L., de Moura, P. R., Bleicher, L., Nascimento, A. S. et al., Crystal structure and statistical coupling analysis of highly glycosylated peroxidase from royal palm tree (Roystonea regia). J. Struct. Biol. 2010, 169, 226–242.
- 65Palm, G. J., Sharma, A., Kumari, M., Panjikar, S. et al., Post-translational modification and extended glycosylation pattern of a plant latex peroxidase of native source characterized by X-ray crystallography. FEBS J. 2004, 281, 4319–4333.
- 66Rose, J. K. C., Lee, S.-J., Straying off the highway: trafficking of secreted plant proteins and complexity in the plant cell wall proteome. Plant Physiol. Biochem. 2010, 153, 433–436.
- 67Ragni, L., Hardtke, C. S., Small but thick enough—the Arabidopsis hypocotyl as a model to study secondary growth. Physiol. Plant. 2014, 151, 164–171.
- 68Ligat, L., Lauber, E., Albenne, C., San Clemente, H. et al., Analysis of the xylem sap proteome of Brassica oleracea reveals a high content in secreted proteins. Proteomics 2011, 11, 1798–1813.
- 69Kieliszewski, M. J., Lamport, D. T. A., Extensin: repetitive motifs, functional sites, post-translational codes, and phylogeny. Plant J. 1994, 5, 157–172.
- 70Di Girolamo, F., Righetti, P. G., Soste, M., Feng, Y., Picotti, P., Reproducibility of combinatorial peptide ligand libraries for proteome capture evaluated by selected reaction monitoring. J. Proteomics 2013, 89, 215–226.
- 71Nawrath, C., Schreiber, L., Franke, R. B., Geldner, N. et al., Apoplastic diffusion barriers in Arabidopsis. Arabidopsis Book 2013, 11, e0167.
- 72Girard, A. L., Mounet, F., Lemaire-Chamley, M., Gaillard, C. et al., Tomato GDSL 1 is required for cutin deposition in the fruit cuticle. Plant Cell 2002, 24, 3119–3134.
- 73Hosmani, P. S., Kamiya, T., Danku, J., Naseer, S. et al., Dirigent domain-containing protein is part of the machinery required for formation of the lignin-based Casparian strip in the root. Proc. Natl. Acad. Sci. U S A 2013, 110, 14498–14503.
- 74Stintzi, A., Heitz, T., Prasad, V., Wiedemann-Merdinoglu, S. et al., Plant pathogenesis-related proteins and their role in defense against pathogens. Biochimie 1993, 75, 687–706.
- 75Wang, T., Chen, X., Zhu, F., Li, H. et al., Characterization of peanut germin-like proteins, AhGLPs in plant development and defense. PLoS One 2013, 8, e61722.
- 76Hurkman, W. J., Tanaka, C. K., Effect of salt stress on germin gene expression in barley roots. Plant Physiol. 1996, 110, 971–977.
- 77Sano, T., Kuraya, Y., Amino, S., Nagata, T., Phosphate as a limiting factor for the cell division of tobacco BY-2 cells. Plant Cell Physiol. 1999, 40, 1–8.
- 78Tran, H. T., Qian, W., Hurley, B. A., She, Y. M. et al., Biochemical and molecular characterization of AtPAP12 and AtPAP26: the predominant purple acid phosphatase isozymes secreted by phosphate-starved Arabidopsis thaliana. Plant Cell Environ. 2010, 33, 1789–1803.
- 79Rojas, H. J., Roldan, J. A., Goldraij, A., NnSR1, a class III non-S-RNase constitutively expressed in styles, is induced in roots and stems under phosphate deficiency in Nicotiana alata. Ann. Bot. 2013, 112, 1351–1360.
- 80Nurnberger, T., Abel, S., Jost, W., Glund, K., Induction of an extracellular ribonuclease in cultured tomato cells upon phosphate starvation. Plant Physiol. 1990, 92, 970–976.
- 81Sousa, A. O., Assis, E. T., Pirovani, C. P., Alvim, F. C., Costa, M. G., Phosphate-induced-1 gene from Eucalyptus (EgPHI-1) enhances osmotic stress tolerance in transgenic tobacco. Genet. Mol. Res. 2014, 13, 1579–1588.
- 82Adamczyk, B., Smolander, A., Kitunen, V., Godlewski, M., Proteins as nitrogen sources for plants. A short story about exudation of proteases by plant roots. Plant Signal. Behav. 2010, 5, 817–819.
- 83van der Hoorn, R., Plant proteases: from phenotypes to molecular mechanisms. Annu. Rev. Plant Biol. 2008, 59, 191–223.
- 84Sedbrook, J. C., Carroll, K. L., Hung, K. F., Masson, P. H., Somerville, C. R., The Arabidopsis SKU5 gene encodes an extracellular glycosyl phosphatidylinositol-anchored glycoprotein involved in directional root growth. Plant Cell 2002, 14, 1635–1648.
- 85Jacobs, J., Roe, J. L., SKS6, a multicopper oxidase-like gene, participates in cotyledon vascular patterning during Arabidopsis thaliana development. Planta 2005, 222, 652–666.
- 86Turlapati, P. V., Kim, K. W., Davin, L. B., Lewis, N. G., The laccase multigene family in Arabidopsis thaliana: towards addressing the mystery of their gene function(s). Planta 2011, 233, 439–470.
- 87Harthill, J. E., Ashford, D. A., N-glycosylation of horseradish peroxidase from cell culture. Biochem. Soc. Trans. 1992, 20, 113S.
- 88Deepa, S. S., Arumughan, C., Purification and characterization of soluble peroxidase from oil palm (Elaeis guineensis Jacq) leaf. Phytochemistry 2002, 61, 503–511.
- 89Taylor, C. M., Karunaratne, C. V., Kie, N., Glycosides of hydroxyproline: some recent, unusual discoveries. Glycobiology 2012, 22, 575–767.
- 90Cosio, C., Dunand, C., Transcriptome analysis of various flower and silique development stages indicates a set of class III peroxidase genes potentially involved in pod shattering in Arabidopsis thaliana. BMC Genomics 2009, 11, 528.