Volume 11, Issue 12 p. 2476-2490
Research Article

Small colony variants of Staphylococcus aureus reveal distinct protein profiles

André Kriegeskorte

André Kriegeskorte

Institute of Medical Microbiology, University Hospital of Münster, Germany

These authors contributed equally to this work.

Search for more papers by this author
Simone König

Simone König

Integrated Functional Genomics, Interdisciplinary Center for Clinical Research, Medical Faculty, University of Münster, Germany

These authors contributed equally to this work.

Search for more papers by this author
Gunnar Sander

Gunnar Sander

Center for Molecular Medicine, University of Cologne (CMMC), Cologne, Germany

Search for more papers by this author
Alexander Pirkl

Alexander Pirkl

Integrated Functional Genomics, Interdisciplinary Center for Clinical Research, Medical Faculty, University of Münster, Germany

Search for more papers by this author
Esther Mahabir

Esther Mahabir

Center for Molecular Medicine, University of Cologne (CMMC), Cologne, Germany

Search for more papers by this author
Richard A. Proctor

Richard A. Proctor

University of Wisconsin School of Medicine and Public Health, Madison, WI, USA

Search for more papers by this author
Christof von Eiff

Christof von Eiff

Institute of Medical Microbiology, University Hospital of Münster, Germany

Search for more papers by this author
Georg Peters

Georg Peters

Institute of Medical Microbiology, University Hospital of Münster, Germany

Search for more papers by this author
Karsten Becker

Corresponding Author

Karsten Becker

Institute of Medical Microbiology, University Hospital of Münster, Germany

Institute of Medical Microbiology, Domagkstraße 10, 48149 Münster, Germany Fax: +49-251-8357350===Search for more papers by this author
First published: 31 March 2011
Citations: 74

Abstract

Small-colony variants (SCVs) of Staphylococcus aureus represent a slow-growing subpopulation causing chronic and relapsing infections due to their physiological adaptation on an intracellular lifestyle. In this first proteomic study on physiological changes associated with a natural, clinically derived SCV, its proteomic profile was investigated in comparison to corresponding isogenic strains displaying normal (clinical wild-type strain, complemented hemB mutant and spontaneous revertant of the clinical SCV) and SCV phenotypes (hemB mutant and gentamicin-induced SCV). Applying an ultra-high resolution chromatography and high mass accuracy MSE-based label-free relative and absolute protein quantification approach, the whole cytoplasmic proteome of this strain sextet was investigated in a growth phase-controlled manner covering early-exponential, late-exponential and stationary phases. Of 1019 cytoplasmic proteins identified, 154 were found to be differently regulated between strains. All SCV phenotypes showed down-regulation of the tricarboxylic acid (TCA) cycle-related proteins and of a protein cluster involved in purine/pyrimidine and folate metabolism. In contrast to hemB mutant and gentamicin-induced SCVs, the clinically derived SCVs showed no prominent up-regulation of glycolytic proteins. The spontaneous switch into the normal phenotype resulted in up-regulation of TCA cycle-related parts, while oxidative stress-related proteins were down-regulated. However, the natural revertant from the clinical SCV retained also dominant protein features of the clinical SCV phenotype. In conclusion, physiological changes between normal and SCV S. aureus phenotypes are more complex than reflected by defined electron transport chain-interrupting mutants and their complemented counterparts.