Towards functional phosphoproteomics by mapping differential phosphorylation events in signaling networks
Sergio de la Fuente van Bentem
Department of Plant Molecular Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
Search for more papers by this authorCorresponding Author
Heribert Hirt Professor
Department of Plant Molecular Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
URGV Plant Genomics, Evry, France
Department of Plant Molecular Biology, Max F. Perutz Laboratories, University of Vienna, Dr.-Bohr-Gasse 9, 1030 Vienna, Austria Fax: +43-1-4277-9546===Search for more papers by this authorSergio de la Fuente van Bentem
Department of Plant Molecular Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
Search for more papers by this authorCorresponding Author
Heribert Hirt Professor
Department of Plant Molecular Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
URGV Plant Genomics, Evry, France
Department of Plant Molecular Biology, Max F. Perutz Laboratories, University of Vienna, Dr.-Bohr-Gasse 9, 1030 Vienna, Austria Fax: +43-1-4277-9546===Search for more papers by this authorAbstract
Protein phosphorylation plays a central role in many signal transduction pathways that mediate biological processes. Novel quantitative mass spectrometry-based methods have recently revealed phosphorylation dynamics in animals, yeast, and plants. These methods are important for our understanding of how differential phosphorylation participates in translating distinct signals into proper physiological responses, and shifted research towards screening for potential cancer therapies and in-depth analysis of phosphoproteomes. In this review, we aim to describe current progress in quantitative phosphoproteomics. This emerging field has changed numerous static pathways into dynamic signaling networks, and revealed protein kinase networks that underlie adaptation to environmental stimuli. Mass spectrometry enables high-throughput and high-quality analysis of differential phosphorylation at a site-specific level. Although determination of differential phosphorylation between treatments is analogous to detecting differential gene expression, the large body of statistical techniques that has been developed for analysis of differential gene expression is not generally applied for detecting differential phosphorylation. We suggest possible improvements for analysis of quantitative phosphorylation by increasing the number of biological replicates and adapting statistical tests used for gene expression profiling and widely implemented in freely available software tools.
References
- 1
Ficarro, S. B.,
McCleland, M. L.,
Stukenberg, P. T.,
Burke, D. J. et al.,
Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae.
Nat. Biotechnol.
2002,
20,
301–305.
- 2
Bodenmiller, B.,
Malmstrom, J.,
Gerrits, B.,
Campbell, D. et al.,
PhosphoPep-a phosphoproteome resource for systems biology research in Drosophila Kc167 cells.
Mol. Syst. Biol.
2007,
3,
139.
- 3
Schmelzle, K.,
White, F. M.,
Phosphoproteomic approaches to elucidate cellular signaling networks.
Curr. Opin. Biotechnol.
2006,
17,
406–414.
- 4
Mann, M.,
Ong, S. E.,
Grønborg, M.,
Steen, H. et al.,
Analysis of protein phosphorylation using mass spectrometry: deciphering the phosphoproteome.
Trends Biotechnol.
2002,
20,
261–268.
- 5
McNulty, D. E.,
Annan, R. S.,
Hydrophilic-interaction chromatography reduces the complexity of the phosphoproteome and improves global phosphopeptide isolation and detection.
Mol. Cell. Proteomics
2008,
7,
971–980.
- 6
Dengjel, J.,
Akimov, V.,
Olsen, J. V.,
Bunkenborg, J. et al.,
Quantitative proteomic assessment of very early cellular signaling events.
Nat. Biotechnol.
2007,
25,
566–568.
- 7
Ubersax, J. A.,
Ferrell, J. E., Jr.,
Mechanisms of specificity in protein phosphorylation.
Nat. Rev. Mol. Cell. Biol.
2007,
8,
530–541.
- 8
Groban, E. S.,
Narayanan, A.,
Jacobson, M. P.,
Conformational changes in protein loops and helices induced by post-translational phosphorylation.
PLoS Comput. Biol.
2006,
2,
e32.
- 9
Serber, Z.,
Ferrell, J. E., Jr.,
Tuning bulk electrostatics to regulate protein function.
Cell
2007,
128,
441–444.
- 10
Strickfaden, S. C.,
Winters, M. J.,
Ben-Ari, G.,
Lamson, R. E. et al.,
A mechanism for cell-cycle regulation of MAP kinase signaling in a yeast differentiation pathway.
Cell
2007,
128,
519–531.
- 11
Seet, B. T.,
Dikic, I.,
Zhou, M. M.,
Pawson, T.,
Reading protein modifications with interaction domains.
Nat. Rev. Mol. Cell. Biol.
2006,
7,
473–483.
- 12
Ding, S. J.,
Qian, W. J.,
Smith, R. D.,
Quantitative proteomic approaches for studying phosphotyrosine signaling.
Expert Rev. Proteomics
2007,
4,
13–23.
- 13
Zhang, Y.,
Wolf-Yadlin, A.,
Ross, P. L.,
Pappin, D. J. et al.,
Time-resolved mass spectrometry of tyrosine phosphorylation sites in the epidermal growth factor receptor signaling network reveals dynamic modules.
Mol. Cell. Proteomics
2005,
4,
1240–1250.
- 14
Zhang, Y.,
Wolf-Yadlin, A.,
White, F. M.,
Quantitative proteomic analysis of phosphotyrosine-mediated cellular signaling networks.
Methods Mol. Biol.
2007,
359,
203–212.
- 15
Huang, H.,
Li, L.,
Wu, C.,
Schibli, D. et al.,
Defining the specificity space of the human src-homology 2 domain.
Mol. Cell. Proteomics
2007,
7,
768–784.
- 16
Jones, R. B.,
Gordus, A.,
Krall, J. A.,
MacBeath, G.,
A quantitative protein interaction network for the ErbB receptors using protein microarrays.
Nature
2006,
439,
168–174.
- 17
Liu, B. A.,
Jablonowski, K.,
Raina, M.,
Arce, M. et al.,
The human and mouse complement of SH2 domain proteins-establishing the boundaries of phosphotyrosine signaling.
Mol. Cell
2006,
22,
851–868.
- 18
Machida, K.,
Thompson, C. M.,
Dierck, K.,
Jablonowski, K. et al.,
High-throughput phosphotyrosine profiling using SH2 domains.
Mol. Cell
2007,
26,
899–915.
- 19
Santos, S. D.,
Verveer, P. J.,
Bastiaens, P. I.,
Growth factor-induced MAPK network topology shapes Erk response determining PC-12 cell fate.
Nat. Cell Biol.
2007,
9,
324–330.
- 20
Feng, L.,
Xie, X.,
Ding, Q.,
Luo, X. et al.,
Spatial regulation of Raf kinase signaling by RKTG.
Proc. Natl. Acad. Sci. USA
2007,
104,
14348–14353.
- 21
Lv, L. L.,
Liu, B. C.,
High-throughput antibody microarrays for quantitative proteomic analysis.
Expert Rev. Proteomics
2007,
4,
505–513.
- 22
Beernink, H. T.,
Nock, S.,
Challenges facing the development and use of protein chips to analyze the phosphoproteome.
Expert Rev. Proteomics
2005,
2,
487–497.
- 23
Ptacek, J.,
Snyder, M.,
Charging it up: global analysis of protein phosphorylation.
Trends Genet.
2006,
22,
545–554.
- 24
Shin, R.,
Alvarez, S.,
Burch, A. Y.,
Jez, J. M.,
Schachtman, D. P.,
Phosphoproteomic identification of targets of the Arabidopsis sucrose nonfermenting-like kinase SnRK2.8 reveals a connection to metabolic processes.
Proc. Natl. Acad. Sci. USA
2007,
104,
6460–6465.
- 25
Tang, W.,
Deng, Z.,
Oses-Prieto, J. A.,
Suzuki, N. et al.,
Proteomic studies of brassinosteroid signal transduction using prefractionation and 2-D DIGE.
Mol. Cell. Proteomics
2008,
7,
728–738.
- 26
Larsen, M. R.,
Thingholm, T. E.,
Jensen, O. N.,
Roepstorff, P.,
Jorgensen, T. J.,
Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns.
Mol. Cell. Proteomics
2005,
4,
873–886.
- 27
Pinkse, M. W.,
Uitto, P. M.,
Hilhorst, M. J.,
Ooms, B.,
Heck, A. J.,
Selective isolation at the femtomole level of phosphopeptides from proteolytic digests using 2D-NanoLC-ESI-MS/MS and titanium oxide precolumns.
Anal. Chem.
2004,
76,
3935–3943.
- 28
Tao, W. A.,
Wollscheid, B.,
O'Brien, R.,
Eng, J. K. et al.,
Quantitative phosphoproteome analysis using a dendrimer conjugation chemistry and tandem mass spectrometry.
Nat. Methods
2005,
2,
591–598.
- 29
Zhou, H.,
Watts, J. D.,
Aebersold, R.,
A systematic approach to the analysis of protein phosphorylation.
Nat. Biotechnol.
2001,
19,
375–378.
- 30
Bodenmiller, B.,
Mueller, L. N.,
Mueller, M.,
Domon, B.,
Aebersold, R.,
Reproducible isolation of distinct, overlapping segments of the phosphoproteome.
Nat. Methods
2007,
4,
231–237.
- 31
Wilson-Grady, J. T.,
Villen, J.,
Gygi, S. P.,
Phosphoproteome analysis of fission yeast.
J. Proteome Res.
2008,
7,
1088–1097.
- 32
Olsen, J. V.,
Blagoev, B.,
Gnad, F.,
Macek, B. et al.,
Global, in vivo, and site-specific phosphorylation dynamics in signaling networks.
Cell
2006,
127,
635–648.
- 33
Rikova, K.,
Guo, A.,
Zeng, Q.,
Possemato, A. et al.,
Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer.
Cell
2007,
131,
1190–1203.
- 34
De la Fuente van Bentem, S.,
Hirt, H.,
Using phosphoproteomics to reveal signaling dynamics in plants.
Trends Plant Sci.
2007,
12,
404–411.
- 35
Macek, B.,
Gnad, F.,
Soufi, B.,
Kumar, C. et al.,
Phosphoproteome analysis of E. coli reveals evolutionary conservation of bacterial Ser/Thr/Tyr phosphorylation.
Mol. Cell. Proteomics
2008,
7,
299–307.
- 36
Macek, B.,
Mijakovic, I.,
Olsen, J. V.,
Gnad, F. et al.,
The serine/threonine/tyrosine phosphoproteome of the model bacterium Bacillus subtilis.
Mol. Cell. Proteomics
2007,
6,
697–707.
- 37
Jensen, O. N.,
Automated phosphorylation site mapping.
Nat. Biotechnol.
2006,
24,
1226–1227.
- 38
Collins, M. O.,
Yu, L.,
Choudhary, J. S.,
Analysis of protein phosphorylation on a proteome-scale.
Proteomics
2007,
7,
2751–2768.
- 39
Yan, W.,
Chen, S. S.,
Mass spectrometry-based quantitative proteomic profiling.
Brief. Funct. Genomic. Proteomic.
2005,
4,
27–38.
- 40
Mueller, L. N.,
Brusniak, M. Y.,
Mani, D. R.,
Aebersold, R.,
An assessment of software solutions for the analysis of mass spectrometry based quantitative proteomics data.
J. Proteome Res.
2008,
7,
51–61.
- 41
Schmelzle, K.,
Kane, S.,
Gridley, S.,
Lienhard, G. E.,
White, F. M.,
Temporal dynamics of tyrosine phosphorylation in insulin signaling.
Diabetes
2006,
55,
2171–2179.
- 42
Gerber, S. A.,
Rush, J.,
Stemman, O.,
Kirschner, M. W.,
Gygi, S. P.,
Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS.
Proc. Natl. Acad. Sci. USA
2003,
100,
6940–6945.
- 43
Mayya, V.,
Rezual, K.,
Wu, L.,
Fong, M. B.,
Han, D. K.,
Absolute quantification of multisite phosphorylation by selective reaction monitoring mass spectrometry: determination of inhibitory phosphorylation status of cyclin-dependent kinases.
Mol. Cell. Proteomics
2006,
5,
1146–1157.
- 44
Pflieger, D.,
Junger, M. A.,
Muller, M.,
Rinner, O. et al.,
Quantitative proteomic analysis of protein complexes: concurrent identification of interactors and their state of phosphorylation.
Mol. Cell. Proteomics
2008,
7,
326–346.
- 45
Munton, R. P.,
Tweedie-Cullen, R.,
Livingstone-Zatchej, M.,
Weinandy, F. et al.,
Qualitative and quantitative analyses of protein phosphorylation in naive and stimulated mouse synaptosomal preparations.
Mol. Cell. Proteomics
2007,
6,
283–293.
- 46
Niittylä, T.,
Fuglsang, A. T.,
Palmgren, M. G.,
Frommer, W. B.,
Schulze, W. X.,
Temporal analysis of sucrose-induced phosphorylation changes in plasma membrane proteins of Arabidopsis.
Mol. Cell. Proteomics
2007,
6,
1711–1726.
- 47
Mann, M.,
Functional and quantitative proteomics using SILAC.
Nat. Rev. Mol. Cell Biol.
2006,
7,
952–958.
- 48
Ong, S. E.,
Blagoev, B.,
Kratchmarova, I.,
Kristensen, D. B. et al.,
Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics.
Mol. Cell. Proteomics
2002,
1,
376–386.
- 49
Van Hoof, D.,
Pinkse, M. W.,
Oostwaard, D. W.,
Mummery, C. L. et al.,
An experimental correction for arginine-to-proline conversion artifacts in SILAC-based quantitative proteomics.
Nat. Methods
2007,
4,
677–678.
- 50
Graumann, J.,
Hubner, N. C.,
Kim, J. B.,
Ko, K. et al.,
SILAC-labeling and proteome quantitation of mouse embryonic stem cells to a depth of 5111 proteins.
Mol. Cell. Proteomics
2007,
7,
672–683.
- 51
Spellman, D. S.,
Deinhardt, K.,
Darie, C. C.,
Chao, M. V.,
Neubert, T. A.,
Stable isotopic labeling of amino acids in cultured primary neurons: Application to BDNF-dependent phosphotyrosine-associated signaling.
Mol. Cell. Proteomics
2008,
7,
1067–1076.
- 52
Cantin, G. T.,
Yi, W.,
Lu, B.,
Park, S. K. et al.,
Combining protein-based IMAC, peptide-based IMAC, and MudPIT for efficient phosphoproteomic analysis.
J. Proteome Res.
2008,
7,
1346–1351.
- 53
Guo, A.,
Villen, J.,
Kornhauser, J.,
Lee, K. A. et al.,
Signaling networks assembled by oncogenic EGFR and c-Met.
Proc. Natl. Acad. Sci. USA
2008,
105,
692–697.
- 54
Huang, P. H.,
Mukasa, A.,
Bonavia, R.,
Flynn, R. A. et al.,
Quantitative analysis of EGFRvIII cellular signaling networks reveals a combinatorial therapeutic strategy for glioblastoma.
Proc. Natl. Acad. Sci. USA
2007,
104,
12867–12872.
- 55
Wolf-Yadlin, A.,
Hautaniemi, S.,
Lauffenburger, D. A.,
White, F. M.,
Multiple reaction monitoring for robust quantitative proteomic analysis of cellular signaling networks.
Proc. Natl. Acad. Sci. USA
2007,
104,
5860–5865.
- 56
Choe, L.,
D'Ascenzo, M.,
Relkin, N. R.,
Pappin, D. et al.,
8-plex quantitation of changes in cerebrospinal fluid protein expression in subjects undergoing intravenous immunoglobulin treatment for Alzheimer's disease.
Proteomics
2007,
7,
3651–3660.
- 57
Ross, P. L.,
Huang, Y. N.,
Marchese, J. N.,
Williamson, B. et al.,
Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents.
Mol. Cell. Proteomics
2004,
3,
1154–1169.
- 58
Benschop, J. J.,
Mohammed, S.,
O'Flaherty, M.,
Heck, A. J. et al.,
Quantitative phospho-proteomics of early elicitor signaling in Arabidopsis.
Mol. Cell. Proteomics
2007,
6,
1198–1214.
- 59
Ippel, J. H.,
Pouvreau, L.,
Kroef, T.,
Gruppen, H. et al.,
In vivo uniform 15N-isotope labeling of plants: using the greenhouse for structural proteomics.
Proteomics
2004,
4,
226–234.
- 60
Engelsberger, W. R.,
Erban, A.,
Kopka, J.,
Schulze, W. X.,
Metabolic labeling of plant cell cultures with K15NO3 as a tool for quantitative analysis of proteins and metabolites.
Plant Methods
2006,
2,
14.
- 61
Nelson, C. J.,
Huttlin, E. L.,
Hegeman, A. D.,
Harms, A. C.,
Sussman, M. R.,
Implications of 15N-metabolic labeling for automated peptide identification in Arabidopsis thaliana.
Proteomics
2007,
7,
1279–1292.
- 62
Huttlin, E. L.,
Hegeman, A. D.,
Harms, A. C.,
Sussman, M. R.,
Comparison of full versus partial metabolic labeling for quantitative proteomics analysis in Arabidopsis thaliana.
Mol. Cell. Proteomics
2007,
6,
860–881.
- 63
Cantin, G. T.,
Venable, J. D.,
Cociorva, D.,
Yates, J. R., 3rd,
Quantitative phosphoproteomic analysis of the tumor necrosis factor pathway.
J. Proteome Res.
2006,
5,
127–134.
- 64
Gruhler, A.,
Olsen, J. V.,
Mohammed, S.,
Mortensen, P. et al.,
Quantitative phosphoproteomics applied to the yeast pheromone signaling pathway.
Mol. Cell. Proteomics
2005,
4,
310–327.
- 65
Marcantonio, M.,
Trost, M.,
Courcelles, M.,
Desjardins, M.,
Thibault, P.,
Combined enzymatic and data mining approaches for comprehensive phosphoproteome analyses; application to cell signaling events of interferon- stimulated macrophages.
Mol. Cell. Proteomics
2008,
7,
645–660.
- 66
Nühse, T. S.,
Bottrill, A. R.,
Jones, A. M.,
Peck, S. C.,
Quantitative phosphoproteomic analysis of plasma membrane proteins reveals regulatory mechanisms of plant innate immune responses.
Plant J.
2007,
51,
931–940.
- 67
Linding, R.,
Jensen, L. J.,
Ostheimer, G. J.,
van Vugt, M. A. et al.,
Systematic discovery of in vivo phosphorylation networks.
Cell
2007,
129,
1415–1426.
- 68
Morandell, S.,
Stasyk, T.,
Grosstessner-Hain, K.,
Roitinger, E. et al.,
Phosphoproteomics strategies for the functional analysis of signal transduction.
Proteomics
2006,
6,
4047–4056.
- 69
Matsuoka, S.,
Ballif, B. A.,
Smogorzewska, A.,
McDonald, E. R., 3rd et al.,
ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage.
Science
2007,
316,
1160–1166.
- 70
Stokes, M. P.,
Rush, J.,
Macneill, J.,
Ren, J. M. et al.,
Profiling of UV-induced ATM/ATR signaling pathways.
Proc. Natl. Acad. Sci. USA
2007,
104,
19855–19860.
- 71
Wang, Y.,
Ding, S. J.,
Wang, W.,
Jacobs, J. M. et al.,
Profiling signaling polarity in chemotactic cells.
Proc. Natl. Acad. Sci. USA
2007,
104,
8328–8333.
- 72
Cao, L.,
Yu, K.,
Banh, C.,
Nguyen, V. et al.,
Quantitative time-resolved phosphoproteomic analysis of mast cell signaling.
J. Immunol.
2007,
179,
5864–5876.
- 73
Oda, K.,
Matsuoka, Y.,
Funahashi, A.,
Kitano, H.,
A comprehensive pathway map of epidermal growth factor receptor signaling.
Mol. Syst. Biol.
2005,
1,
2005
0010.
- 74
Yarden, Y.,
Shilo, B. Z.,
SnapShot: EGFR signaling pathway.
Cell
2007,
131,
1018.
- 75
Stasyk, T.,
Schiefermeier, N.,
Skvortsov, S.,
Zwierzina, H. et al.,
Identification of endosomal epidermal growth factor receptor signaling targets by functional organelle proteomics.
Mol. Cell. Proteomics
2007,
6,
908–922.
- 76
Taub, N.,
Teis, D.,
Ebner, H. L.,
Hess, M. W.,
Huber, L. A.,
Late endosomal traffic of the epidermal growth factor receptor ensures spatial and temporal fidelity of mitogen-activated protein kinase signaling.
Mol. Biol. Cell.
2007,
18,
4698–4710.
- 77
Malmstrom, J.,
Lee, H.,
Aebersold, R.,
Advances in proteomic workflows for systems biology.
Curr. Opin. Biotechnol.
2007,
18,
378–384.
- 78
Bose, R.,
Molina, H.,
Patterson, A. S.,
Bitok, J. K. et al.,
Phosphoproteomic analysis of Her2/neu signaling and inhibition.
Proc. Natl. Acad. Sci. USA
2006,
103,
9773–9778.
- 79
Wolf-Yadlin, A.,
Kumar, N.,
Zhang, Y.,
Hautaniemi, S. et al.,
Effects of HER2 overexpression on cell signaling networks governing proliferation and migration.
Mol. Syst. Biol.
2006,
2,
54.
- 80
Kumar, N.,
Wolf-Yadlin, A.,
White, F. M.,
Lauffenburger, D. A.,
Modeling HER2 effects on cell behavior from mass spectrometry phosphotyrosine data.
PLoS Comput. Biol.
2007,
3,
e4.
- 81
Amit, I.,
Wides, R.,
Yarden, Y.,
Evolvable signaling networks of receptor tyrosine kinases: relevance of robustness to malignancy and to cancer therapy.
Mol. Syst. Biol.
2007,
3,
151.
- 82
Engelman, J. A.,
Zejnullahu, K.,
Mitsudomi, T.,
Song, Y. et al.,
MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling.
Science
2007,
316,
1039–1043.
- 83
Huang, P. H.,
Cavenee, W. K.,
Furnari, F. B.,
White, F. M.,
Uncovering therapeutic targets for glioblastoma: a systems biology approach.
Cell Cycle
2007,
6,
2750–2754.
- 84
Bantscheff, M.,
Eberhard, D.,
Abraham, Y.,
Bastuck, S. et al.,
Quantitative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors.
Nat. Biotechnol.
2007,
25,
1035–1044.
- 85
Karaman, M. W.,
Herrgard, S.,
Treiber, D. K.,
Gallant, P. et al.,
A quantitative analysis of kinase inhibitor selectivity.
Nat. Biotechnol.
2008,
26,
127–132.
- 86
Zhou, Y.,
Cras-Méneur, C.,
Ohsugi, M.,
Stormo, G. D.,
Permutt, M. A.,
A global approach to identify differentially expressed genes in cDNA (two-color) microarray experiments.
Bioinformatics
2007,
23,
2073–2079.
- 87
Baldi, P.,
Long, A.,
A Bayesian framework for the analysis inferences of gene changes.
Bioinformatics
2001,
17,
509–519.
- 88
Tusher, V. G.,
Tibshirani, R.,
Chu, G.,
Significance analysis of microarrays applied to the ionizing radiation response.
Proc. Natl. Acad. Sci. USA
2001,
98,
5116–5121.
- 89
Efron, E.,
Tibshirani, R.,
Storey, J.,
Tusher, V.,
Empirical Bayes analysis of a microarray experiment.
J. Am. Statist. Assoc.
2001,
96,
1151–1160.
- 90
Lonnstedt, I.,
Speed, T. P.,
Replicated microarray data.
Statistica Sinica
2002,
12,
31–46.
- 91
Yang, Y. H.,
Xiao, Y.,
Segal, M.,
Indentifying differentially expressed genes from microarray experiments via statistic synthesis.
Bioinformatics
2005,
21,
1084–1093.
- 92
Trinidad, J. C.,
Thalhammer, A.,
Specht, C. G.,
Lynn, A. J. et al.,
Quantitative analysis of synaptic phosphorylation and protein expression.
Mol. Cell. Proteomics
2008,
7,
684–696.
- 93
Dudoit, S.,
Yang, Y. H.,
Callow, M. J.,
Speed, T. P.,
Statistical methods for identifying differentially expressed genes in replicated cDNA microarray experiments.
Statist. Sinica
2002,
12,
111 – 139.
- 94
Bonferroni, C. E.,
Teoria statistica delle classi e calcolo delle probabilita.
Pubblicazioni del R Istituto Superiore di Scienze Economiche e Commerciali di Firenze
1936,
8,
3–62.
- 95
Holm, S.,
A simple sequentially rejective multiple test procedure.
Scand. J. Stat.
1979,
6,
65–70.
- 96
Benjamini, Y.,
Hochberg, Y.,
Controlling the False Discovery Rate: A practical and powerful approach to multiple testing.
J. Roy. Statist. Soc. Ser. B
1995,
57,
289–300.
- 97
Allison, D. B.,
Gadbury, G. L.,
Heo, M.,
Fernández, J. R. et al.,
A mixture model approach for the analysis of microarray gene expression data.
Comput. Statist. Data Anal.
2002,
39,
1–20.
- 98
Benjamini, Y.,
Hochberg, Y.,
On the adaptive control of the false discovery rate in multiple testing with independent statistics.
J. Educa. Behav. Stat.
2000,
25,
60–83.
- 99
Fernando, R. L.,
Nettleton, D.,
Southey, B. R.,
Dekkers, J. C. M. et al.,
Controlling the proportion of false positives (PFP) in multiple dependent tests.
Genetics
2004,
166,
611–619.
- 100
Langaas, M.,
Lindqvist, B. H.,
Ferkingstad, E.,
Estimating the proportion of true null hypotheses, with application to DNA microarray data.
J. Roy. Statist. Soc.: Series B (Statistical Methodology)
2005,
67,
555–572.
- 101
Manly, K. F.,
Nettleton, D.,
Hwang, J. T.,
Genomics, prior probability, and statistical tests of multiple hypotheses.
Genome Res.
2004,
14,
997–1001.
- 102
Mosig, M. O.,
Lipkin, E.,
Khutoreskaya, G.,
Tchourzyna, E. et al.,
A whole genome scan for quantitative trait loci affecting milk protein percentage in Israeli-Holstein cattle, by means of selective milk DNA pooling in a daughter design, using an adjusted false discovery rate criterion.
Genetics
2001,
157,
1683–1698.
- 103
Storey, J. D.,
Tibshirani, R.,
Statistical significance for genomewide studies.
Proc. Natl. Acad. Sci. USA
2003,
100,
9440–9445.
- 104
Storey, J. D.,
A direct approach to false discovery rates.
J. R. Stat.Soc.
2002,
3,
479–498.
- 105
Storey, J. D.,
Dai, J. Y.,
Leek, J. T.,
The optimal discovery procedure for large-scale significance testing, with applications to comparative microarray experiments.
Biostatistics
2007,
8,
414–432.
- 106
Leek, J. T.,
Monsen, E.,
Dabney, A. R.,
Storey, J. D.,
EDGE: Extraction and analysis of differential gene expression.
Bioinformatics
2006,
22,
507–508.
- 107
Kerr, M. K.,
Martin, M.,
Churchill, G. A.,
Analysis of variance for gene expression microarray data.
J. Comput. Biol.
2000,
7,
819–837.
- 108
Wolfinger, R. D.,
Gibson, G.,
Wolfinger, E. D.,
Bennett, L. et al.,
Assessing gene significance from cDNA microarray expression data via mixed models.
J Comput Biol.
2001,
8,
625–637.
- 109
Nettleton, D.,
A discussion of statistical methods for design and analysis of microarray experiments for plant scientists.
Plant Cell
2006,
18,
2112–2121.
- 110
Park, T.,
Yi, S. G.,
Lee, S.,
Lee, S. Y. et al.,
Statistical tests for identifying differentially expressed genes in time-course microarray experiments.
Bioinformatics
2003,
19,
694–703.
- 111
Di Camillo, B.,
Toffolo, G.,
Nair, S. K.,
Greenlund, L. J.,
Cobelli, C.,
Significance analysis of microarray transcript levels in time series experiments.
BMC bioinformatics
2007,
8
Suppl 1,
S10.
- 112
Fischer, E. A.,
Friedman, M. A.,
Markey, M. K.,
Empirical comparison of tests for differential expression on time-series microarray experiments.
Genomics
2007,
89,
460–470.
- 113
Storey, J. D.,
Xiao, W.,
Leek, J. T.,
Tompkins, R. G.,
Davis, R. W.,
Significance analysis of time course microarray experiments.
Proc. Natl. Acad. Sci. USA
2005,
102,
12837–12842.
- 114
Xu, X. L.,
Olson, J. M.,
Zhao, L. P.,
A regression-based method to identify differentially expressed genes in microarray time course studies and its application in an inducible Huntington's disease transgenic model.
Hum. Mol. Genet.
2002,
11,
1977–1985.
- 115
Tai, Y. C.,
Speed, T. P.,
A multivariate empirical Bayes statistic for replicated microarray time course data.
Annals of Statistics
2006,
34,
2387–2412.
- 116
Guo, X.,
Qi, H.,
Verfaillie, C. M.,
Pan, W.,
Statistical significance analysis of longitudinal gene expression data.
Bioinformatics
2003,
19,
1628–1635.
- 117
Yuan, M.,
Kendziorski, C.,
Hidden Markov models for microarray time course data in multiple biological conditions (with discussion).
J. Amer. Statist. Assoc.
2006,
101,
1323–1340.
- 118
Alter, O.,
Brown, P. O.,
Botstein, D.,
Generalized singular value decomposition for comparative analysis of genome-scale expression data sets of two different organisms.
Proc. Natl. Acad. Sci. USA
2003,
100 ,
3351–3356.
- 119
Subramanian, A.,
Tamayo, P.,
Mootha, V. K.,
Mukherjee, S. et al.,
Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles.
Proc. Natl. Acad. Sci. USA
2005,
102,
15545–15550.
- 120
Hosack, D. A.,
Dennis, G. J.,
Sherman, B. T.,
Lane, H. C.,
Lempicki, R. A.,
Identifying biological themes within lists of genes with EASE.
Genome Biol.
2003,
4,
R70.
- 121
Mootha, V. K.,
Lindgren, C. M.,
Eriksson, K. F.,
Subramanian, A. et al.,
PGC-1 a-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes.
Nat. Genet.
2003,
34,
267–273.
- 122
Dinu, I.,
Potter, J. D.,
Mueller, T.,
Liu, Q. et al.,
Improving gene set analysis of microarray data by SAM-GS.
BMC Bioinformatics
2007,
8,
242.
- 123
Goeman, J. J.,
Van de Geer, S. A.,
De Kort, F.,
Van Houwelingen, J. C.,
A global test for groups of genes: testing association with a clinical outcome.
Bioinformatics
2004,
20,
93–99.
- 124
Pieroni, E.,
de la Fuente van Bentem, S.,
Mancosu, G.,
Capobianco, E. et al.,
Protein networking: insights into global functional organization of proteomes.
Proteomics
2008,
8,
799–816.
- 125
Hunter, T.,
The age of crosstalk: phosphorylation, ubiquitination, and beyond.
Mol. Cell
2007,
28,
730–738.
- 126
Albeck, J. G.,
MacBeath, G.,
White, F. M.,
Sorger, P. K. et al.,
Collecting and organizing systematic sets of protein data.
Nat. Rev. Mol. Cell Biol.
2006,
7,
803–812.
- 127
Janes, K. A.,
Yaffe, M. B.,
Data-driven modelling of signal-transduction networks.
Nat. Rev. Mol. Cell. Biol.
2006,
7,
820–828.
- 128
Zhu, X.,
Gerstein, M.,
Snyder, M.,
Getting connected: analysis and principles of biological networks.
Genes Dev.
2007,
21,
1010–1024.
- 129
Krijgsveld, J.,
Ketting, R. F.,
Mahmoudi, T.,
Johansen, J. et al.,
Metabolic labeling of C. elegans and D. melanogaster for quantitative proteomics.
Nat. Biotechnol.
2003,
21,
927–931.
- 130
McClatchy, D. B.,
Liao, L.,
Park, S. K.,
Venable, J. D.,
Yates, J. R.,
Quantification of the synaptosomal proteome of the rat cerebellum during post-natal development.
Genome Res.
2007,
17,
1378–1388.
- 131
Wu, C. C.,
MacCoss, M. J.,
Howell, K. E.,
Matthews, D. E.,
Yates, J. R., 3rd,
Metabolic labeling of mammalian organisms with stable isotopes for quantitative proteomic analysis.
Anal. Chem.
2004,
76,
4951–4959.
- 132
Macek, B.,
Waanders, L. F.,
Olsen, J. V.,
Mann, M.,
Top-down protein sequencing and MS3 on a hybrid linear quadrupole ion trap-orbitrap mass spectrometer.
Mol. Cell. Proteomics
2006,
5,
949–958.
- 133
Nesvizhskii, A. I.,
Vitek, O.,
Aebersold, R.,
Analysis and validation of proteomic data generated by tandem mass spectrometry.
Nat. Methods
2007,
4,
787–797.
- 134
Taylor, C. F.,
Paton, N. W.,
Lilley, K. S.,
Binz, P. A. et al.,
The minimum information about a proteomics experiment (MIAPE).
Nat. Biotechnol.
2007,
25,
887–893.
- 135
Mukherji, M.,
Brill, L. M.,
Ficarro, S. B.,
Hampton, G. M.,
Schultz, P. G.,
A phosphoproteomic analysis of the ErbB2 receptor tyrosine kinase signaling pathways.
Biochemistry
2006,
45,
15529–15540.