Profiling human brain proteome by multi-dimensional separations coupled with MS
Young Mok Park
Proteomics Team, Korea Basic Science Institute, Daejeon, Republic of Korea
Search for more papers by this authorJin Young Kim
Proteomics Team, Korea Basic Science Institute, Daejeon, Republic of Korea
Search for more papers by this authorKyung-Hoon Kwon
Mass Spectrometer Development Team, Korea Basic Science Institute, Daejeon, Republic of Korea
Search for more papers by this authorSang Kwang Lee
Proteomics Team, Korea Basic Science Institute, Daejeon, Republic of Korea
Search for more papers by this authorYoung Hye Kim
Proteomics Team, Korea Basic Science Institute, Daejeon, Republic of Korea
Search for more papers by this authorSe-Young Kim
Proteomics Team, Korea Basic Science Institute, Daejeon, Republic of Korea
Search for more papers by this authorGun Wook Park
Mass Spectrometer Development Team, Korea Basic Science Institute, Daejeon, Republic of Korea
Search for more papers by this authorJeong Hwa Lee
Proteomics Team, Korea Basic Science Institute, Daejeon, Republic of Korea
Search for more papers by this authorBonghee Lee
Department of Anatomy and Neurobiology, College of Medicine, Cheju National University, Jeju, Republic of Korea
Search for more papers by this authorCorresponding Author
Jong Shin Yoo Dr.
Mass Spectrometer Development Team, Korea Basic Science Institute, Daejeon, Republic of Korea
Mass Spectrometer Development Team, Korea Basic Science Institute, 52 Yeoeun-dong, Yusung-gu, Daejeon 305–333, Republic of Korea Fax: +82-42-865-3419===Search for more papers by this authorYoung Mok Park
Proteomics Team, Korea Basic Science Institute, Daejeon, Republic of Korea
Search for more papers by this authorJin Young Kim
Proteomics Team, Korea Basic Science Institute, Daejeon, Republic of Korea
Search for more papers by this authorKyung-Hoon Kwon
Mass Spectrometer Development Team, Korea Basic Science Institute, Daejeon, Republic of Korea
Search for more papers by this authorSang Kwang Lee
Proteomics Team, Korea Basic Science Institute, Daejeon, Republic of Korea
Search for more papers by this authorYoung Hye Kim
Proteomics Team, Korea Basic Science Institute, Daejeon, Republic of Korea
Search for more papers by this authorSe-Young Kim
Proteomics Team, Korea Basic Science Institute, Daejeon, Republic of Korea
Search for more papers by this authorGun Wook Park
Mass Spectrometer Development Team, Korea Basic Science Institute, Daejeon, Republic of Korea
Search for more papers by this authorJeong Hwa Lee
Proteomics Team, Korea Basic Science Institute, Daejeon, Republic of Korea
Search for more papers by this authorBonghee Lee
Department of Anatomy and Neurobiology, College of Medicine, Cheju National University, Jeju, Republic of Korea
Search for more papers by this authorCorresponding Author
Jong Shin Yoo Dr.
Mass Spectrometer Development Team, Korea Basic Science Institute, Daejeon, Republic of Korea
Mass Spectrometer Development Team, Korea Basic Science Institute, 52 Yeoeun-dong, Yusung-gu, Daejeon 305–333, Republic of Korea Fax: +82-42-865-3419===Search for more papers by this authorAbstract
In our initial attempt to analyze the human brain proteome, we applied multi-dimensional protein separation and identification techniques using a combination of sample fractionation, 1-D SDS-PAGE, and MS analysis. The complexity of human brain proteome requires multiple fractionation strategies to extend the range and total number of proteins identified. According to the method of Klose (Methods Mol. Biol. 1999, 112, 67), proteins of the temporal lobe of human brain were fractionated into (i) cytoplasmic and nucleoplasmic, (ii) membrane and other structural, and (iii) DNA-binding proteins. Each fraction was then separated by SDS-PAGE, and the resulting gel line was cut into approximately 50 bands. After trypsin digestion, the resulting peptides from each band were analyzed by RP-LC/ESI-MS/MS using an LTQ spectrometer. The SEQUEST search program, which searched against the IPI database, was used for peptide sequence identification, and peptide sequences were validated by reversed sequence database search and filtered by the Protein Hit Score. Ultimately, 1533 proteins could be detected from the human brain. We classified the identified proteins according to their distribution on cellular components. Among these proteins, 24% were membrane proteins. Our results show that the multiple separation strategy is effective for high-throughput characterization of proteins from complex proteomic mixtures.
Supporting Information
Supporting information for this article is available on the WWW under http://www.wiley-vch.de/contents/jc_2120/2006/pro200600098_s.pdf or from the author.
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Butterfield, D. A., Castegna, A., Amino Acids 2003, 25, 419–425.
- 2 Lubec, G., Krapenbauer, K., Fountoulakis, M., Prog. Neurobiol. 2003, 69, 193–211.
- 3 Lin, D., Tabb, D. L., Yates, J. R. III, Biochim. Biophy. Acta 2003, 1646, 1–10.
- 4
Alaiya, A. A.,
Franzen, B.,
Auer, G.,
Linder, S.,
Electrophoresis
2000,
21,
1210–1217.
10.1002/(SICI)1522-2683(20000401)21:6<1210::AID-ELPS1210>3.0.CO;2-S CASPubMedWeb of Science®Google Scholar
- 5 Banks, R. E., Dunn, M. J., Hochstrasser, D. F., Sanchez, J.-C. et al., Lancet 2000, 356, 1749–1756.
- 6 Bichsel, V. E., Liotta, L. A., Petricoin, E. F. III, Cancer J. 2001, 7, 69–77.
- 7
Cash, P.,
Electrophoresis
2000,
21,
1187–1201.
10.1002/(SICI)1522-2683(20000401)21:6<1187::AID-ELPS1187>3.0.CO;2-F CASPubMedWeb of Science®Google Scholar
- 8 Cordwell, S. J., Nouwens, A. S., Walsh, B. J., Proteomics 2001, 1, 461–472.
- 9 Hanash, S., Nature 2003, 422, 226–232.
- 10
Jungblut, P. R.,
Zimny-Arndt, U.,
Zeindl-Eberhart, E.,
Stulik, J. et al.,
Electrophoresis
1999,
20,
2100–2110.
10.1002/(SICI)1522-2683(19990701)20:10<2100::AID-ELPS2100>3.0.CO;2-D CASPubMedWeb of Science®Google Scholar
- 11
Rohlff, C.,
Electrophoresis
2000,
21,
1227–1234.
10.1002/(SICI)1522-2683(20000401)21:6<1227::AID-ELPS1227>3.0.CO;2-L CASPubMedWeb of Science®Google Scholar
- 12 Simpson, R. J., Dorow, D. S., Trends Biotechnol. 2001, 19, S40–S48.
- 13 Zheng, P. P., Kros, J. M., Sillevis-Smitt, P. A., Luider, T. M. et al., Front. Biosci. 2003, 8, D451–D463.
- 14
Stephan, C.,
Hamacher, M.,
Meyer, H. E.,
Proteomics
2005,
5,
615–616.
10.1002/pmic.200590000 Google Scholar
- 15 Meyer, H. E., Klose, J., Hamacher, M., Lancet Neurol. 2003, 2, 657–658.
- 16 Klose, J., Nock, C., Herrmann, M., Stuhler, K. et al., Nat. Genet. 2002, 30, 385–393.
- 17 Krapfenbauer, K., Fountoulakis, M., Lubec, G., Electrophoresis 2003, 24, 1847–1870.
- 18 Beranova-Giorgianni, S., Pabst, M. J., Russell, T. M., Giorgianni, F. et al., Brain Res. Mol. Brain Res. 2002, 98, 35–40.
- 19 Beranova-Giorgianni, S., Giorgianni, F., Desiderio, D. M., Proteomics 2002, 2, 534–542.
- 20 Yang, J. W., Czech, T., Lubec, G., Electrophoresis 2004, 25, 1169–1174.
- 21 Lubec, G., Krapfenbauer, K., Fountoulakis, M., Prog. Neurobiol. 2003, 69, 193–211.
- 22 Fountoulakis, M., Amino Acids 2001, 21, 363–381.
- 23 Washburn, M. P., Wolters, D., Yates, J. R., III, Nat. Biotechnol. 2001, 19, 242–247.
- 24 Koller, A., Washburn, M. P., Lange, B. M., Andon, N. L. et al., Proc. Natl. Acad. Sci. USA 2002, 99, 11969–11974.
- 25 Florens, L., Washburn, M. P., Raine, J. D., Anthory, R. M. et al., Nature 2002, 419, 520–526.
- 26 Wu, C. C., MacCoss, M J., Howell, K. E., Yates, J. R. III, Nat. Biotechnol. 2003, 21, 532–538.
- 27 Schirle, M., Heurtier, M. A., Kuster, B., Mol. Cell. Proteomics 2003, 2, 1297–1305.
- 28 Edmondson, R. D., Vondriska, T. M., Biederman, K. J., Zhang, J. et al., Mol. Cell. Proteomics 2002, 1, 421–433.
- 29 Eng, J. K., Mc Cornmack, A. L., Yates, J. R. III, J. Am. Soc. Mass Spectrom. 1994, 5, 976–989.
- 30
Perkins, D. N.,
Pappin, D. J.,
Creasy, D. M.,
Cottrell, J. S.,
Electrophoresis
1999,
20,
3551–3567.
10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2 CASPubMedWeb of Science®Google Scholar
- 31 Field, H. I., Fenyo, D., Beavis, R. C., Proteomics 2000, 2, 36–47.
- 32 Craig, R., Beavis, R. C., Bioinformatics 2004, 20, 1466–1467.
- 33 Elias, J. E., Gibbornsm F. D., King, O. D., Roth, F. P., Gygi, S. P., Nat. Biotechnol. 2004, 22, 214–219.
- 34 Anderson, D. C., Li, W., Payan, D. G., J. Proteome Res. 2003, 2, 137–146/.
- 35 Sadygov, R. G., Liu, H., Yates, J. R. III, Anal. Chem. 2004, 76, 1664–1671.
- 36 Park, G. W., Kwon, K. H., Kim, J. Y., Lee, J. H. et al., Proteomics 2006, 6, 1121–1132.
- 37 Klose, J., Methods Mol. Biol. 1999, 112, 67–85.
- 38 Link, A. J., Eng, J., Schieltz, D. M., Carmack, E. B. et al., Nat. Biotechnol. 1999, 17, 676–682.
- 39 Wu, S. L., Choudhary, G., Ramstrom, M., Bergquist, J., Hancock, W. S., J. Proteome Res. 2003, 2, 383–393.
- 40 Moore, R. E., Young, M. K., Lee, T. D., J. Am. Soc. Mass Spectrom. 2002, 13, 378–386.
- 41 Yates, J. R. III, Eng, J. R., McCormack, A. L., Schieltz, D., Anal Chem. 1995, 67, 1426–1436.
- 42 Peri, S., Navarro, J. D., Amanchy, R., Kristiansen, T. Z. et al., Genome Res. 2003, 13, 2363–2371.
- 43 Yu, L. R., Conrads T. P., Uo T., Kinoshita, Y. et al., Moll. Cell. Proteomics 2004, 3, 896–907.
- 44 Moebius, J., Zahedi, R. P., Lewandrowski, U., Berger, C. et al., Moll. Cell. Proteomics 2005, 3, 1754–1761.
- 45 Fountoulakis, M., Juranville, J. F., Dierssen, M., Lubec, G., Proteomics 2002, 2, 1547–1576.
- 46 Fountoulakis, M., Cairns, N., Lubec, G., J. Neural., Transm. Suppl. 1999, 57, 323–335.
- 47 Fountoulakis, M., Mass Spectrom. Rev. 2004, 23, 231–258.
- 48
Greber, S.,
Lubec, G.,
Cairns, N.,
Fountoulakis, M.,
Electrophoresis
1999,
20,
928–934.
10.1002/(SICI)1522-2683(19990101)20:4/5<928::AID-ELPS928>3.0.CO;2-Z CASPubMedWeb of Science®Google Scholar
- 49 Yoo, B. C., Cairns, N., Fountoulakis, M., Lubec, G., Dement. Geriatr. Cogn. Disord. 2001, 12, 219–225.
- 50 Chen, W., Ji, J., Xu, X., He, S., Ru, B., Int. J. Dev. Neurosci. 2003, 21, 209–216.
- 51 Balcz, B., Kirchner, L., Cairns, N., Fountoulakis, M. et al., J. Neural. Transm. Suppl. 2001, 61, 193–202.
- 52 Lubec, G., Labudova, O., Cairns, N., Berndt, P. et al., J. Neural. Transm. Suppl. 1999, 57, 21–40.
- 53 Yoo, B. C., Kim, S. H., Cairns, N., Fountoulakis, M., Lubec, G., Biochem. Biophys. Res. Commun. 2001, 280, 249–258.
- 54 Castegna, A., Aksenov, M., Thongboonkerd, V., Klein, J. B. et al., J. Neurochem. 2002, 82, 1524–1532.
- 55 Tsuji, T., Shiozaki, A., Kohno, R., Shimohama, S., Neurochem. Res. 2002, 27, 1245–1253.
- 56 Castegna, A., Aksenov, M., Aksenova, M., Thongboonkerd, V. et al., Free Radic. Med. 2002, 33, 562–571.
- 57 Yoo, B. C., Vlkolinsky, R., Engidawork, E., Cairns, N. et al., Electrophoresis 2001, 22, 1233–1241.
- 58 Lubec, G., Labudova, O., Cairns, N., Fountoulakis, M., Neurosci. Lett. 1999, 260, 141–145.
- 59 Kim, S. H., Vlkolinsky, R., Cairns, N., Fountoulakis, M. et al., Life Sci. 2001, 68, 2741–2750.
- 60 Kim, S. H., Cairns, N., Fountoulakis, M., Lubec, G., J. Neural. Transm. Suppl. 2001, 61, 223–235.
- 61 Cheon M. S., Fountoulakis, M., Cairns, N. J., Dierssen, M. et al., J. Neural. Transm. Suppl. 2001, 61, 281–288.
- 62 Yoo, B. C., Fountoulakis, M., Cairns, N., Lubec, G., Electrophoresis 2001, 22, 172–179.
Citing Literature
Special Issue:THE HUPO BRAIN PROTEOME PROJECT Concerted Proteome Analysis of the Brain
No. 18 September 2006
Pages 4978-4986