The basis of anisotropic water diffusion in the nervous system – a technical review
Corresponding Author
Christian Beaulieu
Department of Biomedical Engineering, Faculty of Medicine, University of Alberta, Edmonton, Alberta, Canada
Department of Biomedical Engineering, 1098 Research Transition Facility, University of Alberta, Edmonton, Alberta, Canada T6G 2V2Search for more papers by this authorCorresponding Author
Christian Beaulieu
Department of Biomedical Engineering, Faculty of Medicine, University of Alberta, Edmonton, Alberta, Canada
Department of Biomedical Engineering, 1098 Research Transition Facility, University of Alberta, Edmonton, Alberta, Canada T6G 2V2Search for more papers by this authorAbstract
Anisotropic water diffusion in neural fibres such as nerve, white matter in spinal cord, or white matter in brain forms the basis for the utilization of diffusion tensor imaging (DTI) to track fibre pathways. The fact that water diffusion is sensitive to the underlying tissue microstructure provides a unique method of assessing the orientation and integrity of these neural fibres, which may be useful in assessing a number of neurological disorders. The purpose of this review is to characterize the relationship of nuclear magnetic resonance measurements of water diffusion and its anisotropy (i.e. directional dependence) with the underlying microstructure of neural fibres. The emphasis of the review will be on model neurological systems both in vitro and in vivo. A systematic discussion of the possible sources of anisotropy and their evaluation will be presented followed by an overview of various studies of restricted diffusion and compartmentation as they relate to anisotropy. Pertinent pathological models, developmental studies and theoretical analyses provide further insight into the basis of anisotropic diffusion and its potential utility in the nervous system. Copyright © 2002 John Wiley & Sons, Ltd.
REFERENCES
- 1Moseley ME, Wendland MF, Kucharczyk J. Magnetic resonance imaging of diffusion and perfusion. Top. Magn. Reson. Imag. 1991; 3: 50–67.
- 2Sotak CH, Li L. MR imaging of anisotropic and restricted diffusion by simultaneous use of spin and stimulated echoes. Magn. Reson. Med. 1992; 26: 174–183.
- 3Beaulieu C. An NMR evaluation of water diffusion and magnetization transfer in nerve. Ph.D. thesis, Biomedical Engineering, University of Alberta, 1995.
- 4Stejskal EO, Tanner JE. Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J. Chem. Phys. 1965; 42: 288–292.
- 5Basser PJ, Mattiello J, LeBihan D. Estimation of the effective self-diffusion tensor from the NMR spin echo. J. Magn. Reson. B 1994; 103: 247–254.
- 6Basser PJ, Mattiello J, LeBihan D. MR diffusion tensor spectroscopy and imaging. Biophys. J. 1994; 66: 259–267.
- 7Pierpaoli C, Basser PJ. Toward a quantitative assessment of diffusion anisotropy. Magn. Reson. Med. 1996; 36: 893–906.
- 8Ulug AM, van Zijl PC. Orientation-independent diffusion imaging without tensor diagonalization: anisotropy definitions based on physical attributes of the diffusion ellipsoid. J. Magn. Reson. Imag. 1999; 9: 804–813.
- 9Finch ED, Harmon JF, Muller BH. Pulsed NMR measurements of the diffusion constant of water in muscle. Arch. Biochem. Biophys. 1971; 147: 299–310.
- 10Hansen JR. Pulsed NMR study of water mobility in muscle and brain tissue. Biochim. Biophys. Acta 1971; 230: 482–486.
- 11Cleveland GG, Chang DC, Hazlewood CF, Rorschach HE. Nuclear magnetic resonance measurement of skeletal muscle: anisotrophy of the diffusion coefficient of the intracellular water. Biophys. J. 1976; 16: 1043–1053.
- 12Callaghan PT. Pulsed field gradient nuclear magnetic resonance as a probe of liquid state molecular organization. Aust. J. Phys. 1984; 37: 359–387.
- 13Wesbey GE, Moseley ME, Ehman RL. Translational molecular self-diffusion in magnetic resonance imaging. II. Measurement of the self-diffusion coefficient. Invest. Radiol. 1984; 19: 491–498.
- 14Thomsen C, Henriksen O, Ring P. In vivo measurement of water self diffusion in the human brain by magnetic resonance imaging. Acta Radiol. 1987; 28: 353–361.
- 15Hoehn-Berlage M, Eis M, Back T, Kohno K, Yamashita K. Changes of relaxation times (T1, T2) and apparent diffusion coefficient after permanent middle cerebral artery occlusion in the rat: temporal evolution, regional extent, and comparison with histology. Magn. Reson. Med. 1995; 34: 824–834.
- 16Lythgoe MF, Busza AL, Calamante F, Sotak CH, King MD, Bingham AC, Williams SR, Gadian DG. Effects of diffusion anisotropy on lesion delineation in a rat model of cerebral ischemia. Magn. Reson. Med. 1997; 38: 662–668.
- 17Hoehn-Berlage M, Eis M, Schmitz B. Regional and directional anisotropy of apparent diffusion coefficient in rat brain. NMR Biomed. 1999; 12: 45–50.
- 18Thornton JS, Ordidge RJ, Penrice J, Cady EB, Amess PN, Punwani S, Clemence M, Wyatt JS. Anisotropic water diffusion in white and gray matter of the neonatal piglet brain before and after transient hypoxia-ischaemia. Magn. Reson. Imag. 1997; 15: 433–440.
- 19Chenevert TL, Brunberg JA, Pipe JG. Anisotropic diffusion in human white matter: demonstration with MR techniques in vivo. Radiology 1990; 177: 401–405.
- 20Chien D, Buxton RB, Kwong KK, Brady TJ, Rosen BR. MR diffusion imaging of the human brain. J. Comput. Assist. Tomogr. 1990; 14: 514–520.
- 21Doran M, Hajnal JV, Van Bruggen N, King MD, Young IR, Bydder GM. Normal and abnormal white matter tracts shown by MR imaging using directional diffusion weighted sequences. J. Comput. Assist. Tomogr. 1990; 14: 865–873.
- 22Turner R, Le Bihan D, Maier J, Vavrek R, Hedges LK, Pekar J. Echo-planar imaging of intravoxel incoherent motion. Radiology 1990; 177: 407–414.
- 23Moseley ME, Cohen YC, Kucharczyk J, Asgari HS, Wendland MF, Tsuruda J, Norman D. Diffusion-weighted MR imaging of anisotropic water diffusion in cat central nervous system. Radiology 1990; 176: 439–445.
- 24Hajnal JV, Doran M, Hall AS, Collins AG, Oatridge A, Pennock JM, Young IR, Bydder GM. MR imaging of anisotropically restricted diffusion of water in the nervous system: technical, anatomic, and pathologic considerations. J. Comput. Assist. Tomogr. 1991; 15: 1–18.
- 25Moseley ME, Kucharczyk J, Asgari HS, Norman D. Anisotropy in diffusion-weighted MRI. Magn. Reson. Med. 1991; 19: 321–326.
- 26Howe FA, Filler AG, Bell BA, Griffiths JR. Magnetic resonance neurography. Magn. Reson. Med. 1992; 28: 328–338.
- 27King MD, van Bruggen N, Ahier RG, Cremer JE, Hajnal JV, Williams SR, Doran M. Diffusion-weighted imaging of kainic acid lesions in the rat brain. Magn. Reson. Med. 1991; 20: 158–164.
- 28Rutherford MA, Cowan FM, Manzur AY, Dubowitz LM, Pennock JM, Hajnal JV, Young IR, Bydder GM. MR imaging of anisotropically restricted diffusion in the brain of neonates and infants. J. Comput. Assist. Tomogr. 1991; 15: 188–198.
- 29Sakuma H, Nomura Y, Takeda K, Tagami T, Nakagawa T, Tamagawa Y, Ishii Y, Tsukamoto T. Adult and neonatal human brain: diffusional anisotropy and myelination with diffusion-weighted MR imaging. Radiology 1991; 180: 229–233.
- 30Douek P, Turner R, Pekar J, Patronas N, Le Bihan D. MR color mapping of myelin fiber orientation. J. Comput. Assist. Tomogr. 1991; 15: 923–929.
- 31Le Bihan D. Molecular diffusion nuclear magnetic resonance imaging. Magn. Reson. Q. 1991; 7: 1–30.
- 32Hong X, Dixon WT. Measuring diffusion in inhomogeneous systems in imaging mode using antisymmetric sensitizing gradients. J. Magn. Reson. 1992; 99: 561–570.
- 33Lian J, Williams DS, Lowe IJ. Magnetic resonance imaging of diffusion in the presence of background gradients and imaging of background gradients. J. Magn. Reson. A 1994; 106: 65–74.
- 34Beaulieu C, Allen PS. Determinants of anisotropic water diffusion in nerves. Magn. Reson. Med. 1994; 31: 394–400.
- 35Darin De Lorenzo AJ, Brzin M, Dettbarn WD. Fine structure and organization of nerve fibers and giant axons in Homarus americanus. J. Ultrastruct. Res. 1968; 24: 367–384.
- 36Wimberger DM, Roberts TP, Barkovich AJ, Prayer LM, Moseley ME, Kucharczyk J. Identification of “premyelination” by diffusion-weighted MRI. J. Comput. Assist. Tomogr. 1995; 19: 28–33.
- 37Prayer D, Roberts T, Barkovich AJ, Prayer L, Kucharczyk J, Moseley M, Arieff A. Diffusion-weighted MRI of myelination in the rat brain following treatment with gonadal hormones. Neuroradiology 1997; 39: 320–325.
- 38Ono J, Harada K, Takahashi M, Maeda M, Ikenaka K, Sakurai K, Sakai N, Kagawa T, Fritz-Zieroth B, Nagai T et al. Differentiation between dysmyelination and demyelination using magnetic resonance diffusional anisotropy. Brain Res. 1995; 671: 141–148.
- 39Seo Y, Shinar H, Morita Y, Navon G. Anisotropic and restricted diffusion of water in the sciatic nerve: A (2)H double-quantum-filtered NMR study. Magn. Reson. Med. 1999; 42: 461–466.
- 40Gulani V, Webb AG, Duncan ID, Lauterbur PC. Apparent diffusion tensor measurements in myelin-deficient rat spinal cords. Magn. Reson. Med. 2001; 45: 191–195.
- 41Huppi PS, Maier SE, Peled S, Zientara GP, Barnes PD, Jolesz FA, Volpe JJ. Microstructural development of human newborn cerebral white matter assessed in vivo by diffusion tensor magnetic resonance imaging. Pediatr. Res. 1998; 44: 584–590.
- 42Neil JJ, Shiran SI, McKinstry RC, Schefft GL, Snyder AZ, Almli CR, Akbudak E, Aronovitz JA, Miller JP, Lee BC, Conturo TE. Normal brain in human newborns: apparent diffusion coefficient and diffusion anisotropy measured by using diffusion tensor MR imaging. Radiology 1998; 209: 57–66.
- 43Beaulieu C, Allen PS. An in vitro evaluation of the effects of local magnetic-susceptibility-induced gradients on anisotropic water diffusion in nerve. Magn. Reson. Med. 1996; 36: 39–44.
- 44Pierpaoli C, Jezzard P, Basser PJ, Barnett A, Di Chiro G. Diffusion tensor MR imaging of the human brain. Radiology 1996; 201: 637–648.
- 45Beaulieu C, Allen PS. Water diffusion in the giant axon of the squid: implications for diffusion-weighted MRI of the nervous system. Magn. Reson. Med. 1994; 32: 579–583.
- 46Trudeau JD, Dixon WT, Hawkins J. The effect of inhomogeneous sample susceptibility on measured diffusion anisotropy using NMR imaging. J. Magn. Reson. B 1995; 108: 22–30.
- 47Clark CA, Barker GJ, Tofts PS. An in vivo evaluation of the effects of local magnetic susceptibility-induced gradients on water diffusion measurements in human brain. J. Magn. Reson. 1999; 141: 52–61.
- 48Menzel MI, Han SI, Stapf S, Blumich B. NMR characterization of the pore structure and anisotropic self-diffusion in salt water ice. J. Magn. Reson. 2000; 143: 376–381.
- 49Henkelman RM, Stanisz GJ, Kim JK, Bronskill MJ. Anisotropy of NMR properties of tissues. Magn. Reson. Med. 1994; 32: 592–601.
- 50Garrido L, Wedeen VJ, Kwong KK, Spencer UM, Kantor HL. Anisotropy of water diffusion in the myocardium of the rat. Circul. Res. 1994; 74: 789–793.
- 51Cooper RL, Chang DB, Young AC, Martin CJ, Ancker-Johnson D. Restricted diffusion in biophysical systems. Experiment. Biophys. J. 1974; 14: 161–177.
- 52Karger J, Pfeifer H, Heink W. Principles and application of self-diffusion measurements by nuclear magnetic resonance. In Advances in Magnetic Resonance, JS Waugh (ed.). Academic Press: San Diego, CA, 1988; 1–89.
- 53Le Bihan D, Turner R, Douek P. Is water diffusion restricted in human brain white matter? An echo-planar NMR imaging study. Neuroreport 1993; 4: 887–890.
- 54Horsfield MA, Barker GJ, McDonald WI. Self-diffusion in CNS tissue by volume-selective proton NMR. Magn. Reson. Med. 1994; 31: 637–644.
- 55Clark CA, Hedehus M, Moseley ME. Diffusion time dependence of the apparent diffusion tensor in healthy human brain and white matter disease. Magn. Reson. Med. 2001; 45: 1126–1129.
- 56Szafer A, Zhong J, Gore JC. Theoretical model for water diffusion in tissues. Magn. Reson. Med. 1995; 33: 697–712.
- 57Stanisz GJ, Szafer A, Wright GA, Henkelman RM. An analytical model of restricted diffusion in bovine optic nerve. Magn. Reson. Med. 1997; 37: 103–111.
- 58Peled S, Cory DG, Raymond SA, Kirschner DA, Jolesz FA. Water diffusion, T2, and compartmentation in frog sciatic nerve. Magn. Reson. Med. 1999; 42: 911–918.
- 59Seo Y, Morita Y, Kusaka Y, Steward MC, Murakami M. Diffusion of water in rat sciatic nerve measured by 1H pulsed field gradient NMR: compartmentation and anisotropy. Jpn. J. Physiol. 1996; 46: 163–169.
- 60Stanisz GJ, Henkelman RM. Diffusional anisotropy of T2 components in bovine optic nerve. Magn. Reson. Med. 1998; 40: 405–410.
- 61Assaf Y, Cohen Y. Assignment of the water slow-diffusing component in the central nervous system using q-space diffusion MRS: implications for fiber tract imaging. Magn. Reson. Med. 2000; 43: 191–199.
- 62Assaf Y, Mayk A, Cohen Y. Displacement imaging of spinal cord using q-space diffusion-weighted MRI. Magn. Reson. Med. 2000; 44: 713–722.
- 63Assaf Y, Cohen Y. Structural information in neuronal tissue as revealed by q-space diffusion NMR spectroscopy of metabolites in bovine optic nerve. NMR Biomed. 1999; 12: 335–344.
- 64MacKay A, Whittall K, Adler J, Li D, Paty D, Graeb D. In vivo visualization of myelin water by magnetic resonance. Magn. Reson. Med. 1994; 31: 673–677.
- 65Rice ME, Okada YC, Nicholson C. Anisotropic and heterogeneous diffusion in the turtle cerebellum: implications for volume transmission. J. Neurophysiol. 1993; 70: 2035–2044.
- 66Vorisek I, Sykova E. Evolution of anisotropic diffusion in the developing rat corpus callosum. J. Neurophysiol. 1997; 78: 912–919.
- 67Sykova E, Vargova L, Prokopova S, Simonova Z. Glial swelling and astrogliosis produce diffusion barriers in the rat spinal cord. Glia 1999; 25: 56–70.
- 68Rubinson KA, Baker PF. The flow properties of axoplasm in a defined chemical environment: influence of anions and calcium. Proc. R. Soc. Lond. B Biol. Sci. 1979; 205: 323–345.
- 69Baker PF, Crawford AC. Mobility and transport of magnesium in squid giant axons. J. Physiol. 1972; 227: 855–874.
- 70Brown A, Lasek RJ. The cytoskeleton of the squid giant axon. In Squid as Experimental Animals, WJ Adelman, DL Gilbert, JM Arnold (eds). Plenum Press: New York, 1990; 235–302.
- 71Woessner DE, Snowden BS, Chiu YC. Pulsed NMR study of the temperature hysteresis in the agar–water system. J. Colloid Interface Sci. 1970; 34: 283–289.
- 72Derbyshire W, Duff ID. NMR of agarose gels. Faraday Disc. Chem. Soc. 1974; 57: 243–254.
- 73Schoeniger JS, Aiken N, Hsu E, Blackband SJ. Relaxation-time and diffusion NMR microscopy of single neurons. J. Magn. Reson. B 1994; 103: 261–273.
- 74Hsu EW, Aiken NR, Blackband SJ. A study of diffusion isotropy in single neurons by using NMR microscopy. Magn. Reson. Med. 1997; 37: 624–627.
- 75Duong TQ, Ackerman JJ, Ying HS, Neil JJ. Evaluation of extra- and intracellular apparent diffusion in normal and globally ischemic rat brain via 19F NMR. Magn. Reson. Med. 1998; 40: 1–13.
- 76Duong TQ, Sehy JV, Yablonskiy DA, Snider BJ, Ackerman JJ, Neil JJ. Extracellular apparent diffusion in rat brain. Magn. Reson. Med. 2001; 45: 801–810.
- 77Beaulieu C, Fenrich FR, Allen PS. Multicomponent water proton transverse relaxation and T2-discriminated water diffusion in myelinated and nonmyelinated nerve. Magn. Reson. Imag. 1998; 16: 1201–1210.
- 78Does MD, Gore JC. Compartmental study of diffusion and relaxation measured in vivo in normal and ischemic rat brain and trigeminal nerve. Magn. Reson. Med. 2000; 43: 837–844.
- 79Fenrich FR, Beaulieu C, Allen PS. Relaxation times and microstructures. NMR Biomed. 2001; 14: 133–139.
- 80Stanisz GJ, Midha R, Munro CA, Henkelman RM. MR properties of rat sciatic nerve following trauma. Magn. Reson. Med. 2001; 45: 415–420.
- 81Inglis BA, Bossart EL, Buckley DL, Wirth ED III, Mareci TH. Visualization of neural tissue water compartments using biexponential diffusion tensor MRI. Magn. Reson. Med. 2001; 45: 580–587.
- 82Mulkern RV, Gudbjartsson H, Westin CF, Zengingonul HP, Gartner W, Guttmann CR, Robertson RL, Kyriakos W, Schwartz R, Holtzman D, Jolesz FA, Maier SE. Multi-component apparent diffusion coefficients in human brain. NMR Biomed. 1999; 12: 51–62.
- 83Mulkern RV, Zengingonul HP, Robertson RL, Bogner P, Zou KH, Gudbjartsson H, Guttmann CR, Holtzman D, Kyriakos W, Jolesz FA, Maier SE. Multi-component apparent diffusion coefficients in human brain: relationship to spin-lattice relaxation. Magn. Reson. Med. 2000; 44: 292–300.
- 84Clark CA, Le Bihan D. Water diffusion compartmentation and anisotropy at high b values in the human brain. Magn. Reson. Med. 2000; 44: 852–859.
- 85Yoshiura T, Wu O, Zaheer A, Reese TG, Sorensen AG. Highly diffusion-sensitized MRI of brain: Dissociation of gray and white matter. Magn. Reson. Med. 2001; 45: 734–740.
- 86Niendorf T, Dijkhuizen RM, Norris DG, van Lookeren Campagne M, Nicolay K. Biexponential diffusion attenuation in various states of brain tissue: implications for diffusion-weighted imaging. Magn. Reson. Med. 1996; 36: 847–857.
- 87Assaf Y, Cohen Y. Non-mono-exponential attenuation of water and N-acetyl aspartate signals due to diffusion in brain tissue. J. Magn. Reson. 1998; 131: 69–85.
- 88Pfeuffer J, Provencher SW, Gruetter R. Water diffusion in rat brain in vivo as detected at very large b values is multicompartmental. Magma 1999; 8: 98–108.
- 89Buckley DL, Bui JD, Phillips MI, Zelles T, Inglis BA, Plant HD, Blackband SJ. The effect of ouabain on water diffusion in the rat hippocampal slice measured by high resolution NMR imaging. Magn. Reson. Med. 1999; 41: 137–142.
- 90Zhong JH, Gore JC. Studies of restricted diffusion in heterogeneous media containing variations in susceptibility. Magn. Reson. Med. 1991; 19: 276–284.
- 91Hürlimann MD, Helmer KG, de Swiet TM, Sen PN, Sotak CH. Spin echoes in a constant gradient and in the presence of simple restriction. J. Magn. Reson. A 1995; 113: 260–264.
- 92Helmer KG, Dardzinski BJ, Sotak CH. The application of porous-media theory to the investigation of time-dependent diffusion in in vivo systems. NMR Biomed. 1995; 8: 297–306.
- 93Cory DG, Garroway AN. Measurement of translational displacement probabilities by NMR: an indicator of compartmentation. Magn. Reson. Med. 1990; 14: 435–444.
- 94King MD, Houseman J, Roussel SA, van Bruggen N, Williams SR, Gadian DG. q-Space imaging of the brain. Magn. Reson. Med. 1994; 32: 707–713.
- 95King MD, Houseman J, Gadian DG, Connelly A. Localized q-space imaging of the mouse brain. Magn. Reson. Med. 1997; 38: 930–937.
- 96Norris DG. The effects of microscopic tissue parameters on the diffusion weighted magnetic resonance imaging experiment. NMR Biomed. 2001; 14: 77–93.
- 97Ford JC, Hackney DB, Alsop DC, Jara H, Joseph PM, Hand CM, Black P. MRI characterization of diffusion coefficients in a rat spinal cord injury model. Magn. Reson. Med. 1994; 31: 488–494.
- 98Fraidakis M, Klason T, Cheng H, Olson L, Spenger C. High-resolution MRI of intact and transected rat spinal cord. Exp. Neurol. 1998; 153: 299–312.
- 99Nevo U, Hauben E, Yoles E, Agranov E, Akselrod S, Schwartz M, Neeman M. Diffusion anisotropy MRI for quantitative assessment of recovery in injured rat spinal cord. Magn. Reson. Med. 2001; 45: 1–9.
- 100Beaulieu C, Does MD, Snyder RE, Allen PS. Changes in water diffusion due to Wallerian degeneration in peripheral nerve. Magn. Reson. Med. 1996; 36: 627–631.
- 101Werring DJ, Toosy AT, Clark CA, Parker GJ, Barker GJ, Miller DH, Thompson AJ. Diffusion tensor imaging can detect and quantify corticospinal tract degeneration after stroke. J. Neurol. Neurosurg. Psychiat. 2000; 69: 269–272.
- 102Pierpaoli C, Barnett A, Pajevic S, Chen R, Penix L, Virta A, Basser P. Water diffusion changes in wallerian degeneration and their dependence on white matter architecture. Neuroimage 2001; 13: 1174–1185.
- 103Heide AC, Richards TL, Alvord EC Jr, Peterson J, Rose LM. Diffusion imaging of experimental allergic encephalomyelitis. Magn. Reson. Med. 1993; 29: 478–484.
- 104Simonova Z, Svoboda J, Orkand P, Bernard CC, Lassmann H, Sykova E. Changes of extracellular space volume and tortuosity in the spinal cord of Lewis rats with experimental autoimmune encephalomyelitis. Physiol. Res. 1996; 45: 11–22.
- 105Ahrens ET, Laidlaw DH, Readhead C, Brosnan CF, Fraser SE, Jacobs RE. MR microscopy of transgenic mice that spontaneously acquire experimental allergic encephalomyelitis. Magn. Reson. Med. 1998; 40: 119–132.
- 106Kinoshita Y, Ohnishi A, Kohshi K, Yokota A. Apparent diffusion coefficient on rat brain and nerves intoxicated with methylmercury. Environ. Res. 1999; 80: 348–354.
- 107Shepherd TM, Thelwall PE, Wirth ED. Non-lethal disruption of the axonal cytoskeleton alters water diffusion in spinal cord white matter. In Proceedings of the 9th ISMRM, Glasgow, Scotland, 2001; 1624.
- 108van Gelderen P, de Vleeschouwer MH, DesPres D, Pekar J, van Zijl PC, Moonen CT. Water diffusion and acute stroke. Magn. Reson. Med. 1994; 31: 154–163.
- 109Wong EC, Cox RW, Song AW. Optimized isotropic diffusion weighting. Magn. Reson. Med. 1995; 34: 139–143.
- 110Mori S, van Zijl PC. Diffusion weighting by the trace of the diffusion tensor within a single scan. Magn. Reson. Med. 1995; 33: 41–52.
- 111Butts K, Pauly J, de Crespigny A, Moseley M. Isotropic diffusion-weighted and spiral-navigated interleaved EPI for routine imaging of acute stroke. Magn. Reson. Med. 1997; 38: 741–749.
- 112Ulug AM, Beauchamp N, Jr., Bryan RN, van Zijl PC. Absolute quantitation of diffusion constants in human stroke. Stroke 1997; 28: 483–490.
- 113Moonen CT, Pekar J, de Vleeschouwer MH, van Gelderen P, van Zijl PC, DesPres D. Restricted and anisotropic displacement of water in healthy cat brain and in stroke studied by NMR diffusion imaging. Magn. Reson. Med. 1991; 19: 327–332.
- 114Kajima T, Azuma K, Itoh K, Kagawa R, Yamane K, Okada Y, Shima T. Diffusion anisotropy of cerebral ischaemia. Acta Neurochir. Suppl. 1994; 60: 216–219.
- 115Matsuzawa H, Kwee IL, Nakada T. Magnetic resonance axonography of the rat spinal cord: postmortem effects. J. Neurosurg. 1995; 83: 1023–1028.
- 116Beaulieu C, Busch E, de Crespigny A, Rother J, Moseley ME. Water diffusion in the optic and trigeminal nerve after cardiac arrest in the rat. In Proceedings of the 5th ISMRM, Vancouver, BC, 1997; 613.
- 117Anderson AW, Zhong J, Petroff OA, Szafer A, Ransom BR, Prichard JW, Gore JC. Effects of osmotically driven cell volume changes on diffusion-weighted imaging of the rat optic nerve. Magn. Reson. Med. 1996; 35: 162–167.
- 118Gulani V, Iwamoto GA, Lauterbur PC. Apparent water diffusion measurements in electrically stimulated neural tissue. Magn. Reson. Med. 1999; 41: 241–246.
- 119Ebisu T, Naruse S, Horikawa Y, Ueda S, Tanaka C, Uto M, Umeda M, Higuchi T. Discrimination between different types of white matter edema with diffusion-weighted MR imaging. J. Magn. Reson. Imag. 1993; 3: 863–868.
- 120Stanisz G, Henkelman RM. Effects of cellular swelling on diffusion in white matter. In Proceedings of the 9th ISMRM, Glasgow, Scotland, 2001; 350.
- 121Makris N, Worth AJ, Sorensen AG, Papadimitriou GM, Wu O, Reese TG, Wedeen VJ, Davis TL, Stakes JW, Caviness VS, Kaplan E, Rosen BR, Pandya DN, Kennedy DN. Morphometry of in vivo human white matter association pathways with diffusion-weighted magnetic resonance imaging. Ann. Neurol. 1997; 42: 951–962.
- 122Beaulieu C, Moseley ME. Diffusion-weighted and perfusion-weighted magnetic resonance imaging in clinical stroke. In Current Review of Cerebrovascular Disease, M Fisher, J Bogousslavsky (eds). Current Medicine: Philadelphia, PA, 1999; 53–64.
- 123Sotak CH. The role of diffusion tensor imaging (DTI) in the evaluation of ischemic brain injury. NMR Biomed. 2002; 17: 561–565.
- 124Prayer D, Barkovich AJ, Kirschner DA, Prayer LM, Roberts TP, Kucharczyk J, Moseley ME. Visualization of nonstructural changes in early white matter development on diffusion-weighted mr images: evidence supporting premyelination anisotropy. Am. J. Neuroradiol. 2001; 22: 1572–1576.
- 125Takahashi M, Ono J, Harada K, Maeda M, Hackney DB. Diffusional anisotropy in cranial nerves with maturation: quantitative evaluation with diffusion MR imaging in rats. Radiology 2000; 216: 881–885.
- 126Nomura Y, Sakuma H, Takeda K, Tagami T, Okuda Y, Nakagawa T. Diffusional anisotropy of the human brain assessed with diffusion-weighted MR: relation with normal brain development and aging. Am. J. Neuroradiol. 1994; 15: 231–238.
- 127Neil J, Miller J, Huppi PS. Diffusion tensor imaging of the developing human brain. NMR Biomed. 2002; 17: 543–550.
- 128Latour LL, Svoboda K, Mitra PM, Sotak CH. Time-dependent diffusion of water in a biological model system. Proc. Natl Acad. Sci. 1994; 91: 1229–1233.
- 129Pfeuffer J, Dreher W, Sykova E, Leibfritz D. Water signal attenuation in diffusion-weighted 1H NMR experiments during cerebral ischemia: influence of intracellular restrictions, extracellular tortuosity, and exchange. Magn. Reson. Imag. 1998; 16: 1023–1032.
- 130Ford JC, Hackney DB. Numerical model for calculation of apparent diffusion coefficients (ADC) in permeable cylinders—comparison with measured ADC in spinal cord white matter. Magn. Reson. Med. 1997; 37: 387–394.
- 131Ford JC, Hackney DB, Lavi E, Phillips M, Patel U. Dependence of apparent diffusion coefficients on axonal spacing, membrane permeability, and diffusion time in spinal cord white matter. J. Magn. Reson. Imag. 1998; 8: 775–782.
Abbreviations used:
-
- ADC
-
apparent diffusion coefficient
-
- b
-
gradient factor
-
- D
-
diffusion coefficient
-
- DTI
-
diffusion-tensor imaging
-
- DWI
-
diffusion-weighted imaging
-
- EAE
-
experimental allergic encephalomyelitis
-
- G
-
strength of diffusion gradients
-
- PGSE
-
pulsed-gradient spin-echo
-
- RMS
-
root mean square displacement
-
- SNR
-
signal-to-noise ratio
-
- T2
-
transverse relaxation time
-
- tdif
-
diffusion time
-
- TE
-
spin-echo time
-
- ∥
-
parallel to the fibre's long axis
-
- ⟂
-
perpendicular to the fibre's long axis
-
- δ
-
length of diffusion gradient
-
- Δ
-
onset separation of diffusion gradients
-
- λ
-
principal eigenvalues
Citing Literature
Special Issue: Diffusion tensor imaging and axonal mapping ‐ state of the art
November ‐ December 2002
Pages 435-455