Hyperpolarized 13C NMR studies of glucose metabolism in living breast cancer cell cultures
T. Harris
Department of Chemical Physics, Weizmann Institute of Science, Rehovot, Israel
Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
Search for more papers by this authorH. Degani
Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
Search for more papers by this authorCorresponding Author
L. Frydman
Department of Chemical Physics, Weizmann Institute of Science, Rehovot, Israel
Correspondence to: L. Frydman, Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel.
E-mail: [email protected]
Search for more papers by this authorT. Harris
Department of Chemical Physics, Weizmann Institute of Science, Rehovot, Israel
Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
Search for more papers by this authorH. Degani
Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
Search for more papers by this authorCorresponding Author
L. Frydman
Department of Chemical Physics, Weizmann Institute of Science, Rehovot, Israel
Correspondence to: L. Frydman, Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel.
E-mail: [email protected]
Search for more papers by this authorAbstract
The recent development of dissolution dynamic nuclear polarization (DNP) gives NMR the sensitivity to follow metabolic processes in living systems with high temporal resolution. In this article, we apply dissolution DNP to study the metabolism of hyperpolarized U-13C,2H7-glucose in living, perfused human breast cancer cells. Spectrally selective pulses were used to maximize the signal of the main product, lactate, whilst preserving the glucose polarization; in this way, both C1-lactate and C3-lactate could be observed with high temporal resolution. The production of lactate by T47D breast cancer cells can be characterized by Michaelis–Menten-like kinetics, with Km = 3.5 ± 1.5 mm and Vmax = 34 ± 4 fmol/cell/min. The high sensitivity of this method also allowed us to observe and quantify the glycolytic intermediates dihydroxyacetone phosphate and 3-phosphoglycerate. Even with the enhanced DNP signal, many other glycolytic intermediates could not be detected directly. Nevertheless, by applying saturation transfer methods, the glycolytic intermediates glucose-6-phosphate, fructose-6-phosphate, fructose-1,6-bisphosphate, glyceraldehyde-3-phosphate, phosphoenolpyruvate and pyruvate could be observed indirectly. This method shows great promise for the elucidation of the distinctive metabolism and metabolic control of cancer cells, suggesting multiple ways whereby hyperpolarized U-13C,2H7-glucose NMR could aid in the diagnosis and characterization of cancer in vivo. Copyright © 2013 John Wiley & Sons, Ltd.
REFERENCES
- 1
Warburg O,
Posener K,
Negelein E. The metabolism of cancer. Biochem. Zeitschr. 1924; 152: 129–169.
- 2
Chen Z,
Lu W,
Garcia-Prieto C,
Huang P. The Warburg effect and its cancer therapeutic implications. J. Bioenerg. Biomembr. 2007; 39: 267–274.
- 3
Moreno-Sanchez R,
Rodr𝚤guez-Enr𝚤quez S,
Mar𝚤n-Hernandez A,
Saavedra E. Energy metabolism in tumor cells. FEBS 2007; 274: 1393–1418.
- 4
Cairns RA,
Harris IS,
Mak TW. Regulation of cancer cell metabolism. Nat. Rev. Cancer 2011; 11: 85–95.
- 5
Tennant DA,
Duran R,
Gottlieb E. Targeting metabolic transformation for cancer therapy. Nat. Rev. Cancer 2010; 10: 267–277.
- 6
Kelloff GJ,
Hoffman JM,
Johnson B,
Scher HI,
Siegel BA,
Cheng EY,
Cheson BD,
O'Shaughnessy J,
Guyton KZ,
Mankoff DA,
Shankar L,
Larson SM,
Sigman CC,
Schilsky RL,
Sullivan DC. Progress and promise of FDG-PET imaging for cancer patient management and oncologic drug development. Clin. Cancer Res. 2005; 11: 2785–2808.
- 7
Pinilla I,
Rodriguez-Vigil B,
Gomez-Leon N. Integrated 18FDG PET/CT: utility and applications in clinical oncology. Clin. Med. 2008; 2: 181–198.
- 8
Glunde K,
Artemov D,
Penet MF,
Jacobs MA,
Bhujwalla ZM. Magnetic resonance spectroscopy in metabolic and molecular imaging and diagnosis of cancer. Chem. Rev. 2010; 110: 3043–3059.
- 9
Glunde K,
Jiang L,
Moestue SA,
Gribbestad IS. MRS and MRSI guidance in molecular medicine: targeting and monitoring of choline and glucose metabolism in cancer. NMR Biomed. 2011; 24: 673–690.
- 10
London R. 13C labeling in studies of metabolic regulation. Prog. Nucl. Magn. Reson. Spectrosc. 1988; 20: 337–383.
- 11
Rivenzon-Segal D,
Boldin-Adamsky S,
Seger D,
Seger R,
Degani H. Glycolysis and glucose transporter 1 as markers of response to hormonal therapy in breast cancer. Int. J. Cancer 2003; 107: 177–182.
- 12
Wijnen JP,
Van der Graaf M,
Scheenen TW,
Klomp DW,
de Galan BE,
Idema AJ,
Heerschap A. In vivo 13C magnetic resonance spectroscopy of a human brain tumor after application of 13C-1-enriched glucose. Magn. Reson. Imaging 2010; 28: 690–697.
- 13
Moreno-Sánchez R,
Saavedra E,
Rodríguez-Enríquez S,
Gallardo-Pérez JC,
Quezada H,
Westerhoff HV. Metabolic control analysis indicates a change of strategy in the treatment of cancer. Mitochondrion 2010; 10: 626–639.
- 14
Yang C,
Richardson A,
Osterman A,
Smith J. Comparative metabolomics of breast cancer. Metabolomics 2008; 4: 13–29.
- 15
Klawitter J,
Anderson N,
Klawitter J,
Christians U,
Leibfritz D,
Eckhardt SG,
Serkova NJ. Time-dependent effects of imatinib in human leukaemia cells: a kinetic NMR-profiling study. Br. J. Cancer 2009; 100: 923–931.
- 16
Fan TW,
Lane AN,
Higashi RM,
Yan J. Stable isotope resolved metabolomics of lung cancer in a SCID mouse model. Metabolomics 2011; 7: 257–269.
- 17
Forbes NS,
Meadows AL,
Clark DS,
Blanch HW. Estradiol stimulates the biosynthetic pathways of breast cancer cells: detection by metabolic flux analysis. Metab. Eng. 2006; 8: 639–652.
- 18
Cuperlovic-Culf M,
Barnett DA,
Culf AS,
Chute I. Cell culture metabolomics: applications and future directions. Drug Discov. Today 2010; 15: 610–621.
- 19
Mashego MR,
Wu L,
Van Dam JC,
Ras C,
Vinke JL,
Van Winden WA,
Van Gulik WM,
Heijnen JJ. MIRACLE: mass isotopomer ratio analysis of U-13C-labeled extracts. A new method for accurate quantification of changes in concentrations of intracellular metabolites. Biotechnol. Bioeng. 2004; 85: 620–628.
- 20
Ardenkjær-Larsen JH,
Fridlund B,
Gram A,
Hansson G,
Hansson L,
Lerche MH,
Servin R,
Thaning M,
Golman K. Increase in signal-to-noise ratio of >10,000 times in liquid-state NMR. Proc. Natl. Acad. Sci. U. S. A. 2003; 100: 10 158–10 163.
- 21
Abragam A,
Goldman M. Principles of dynamic nuclear polarization. Rep. Prog. Phys. 1978; 41: 395–467.
- 22
Day SE,
Kettunen MI,
Gallagher FA,
Hu DE,
Lerche M,
Wolber J,
Golman K,
Ardenkjaer-Larsen JH,
Brindle KM. Detecting tumor response to treatment using hyperpolarized 13C magnetic resonance imaging and spectroscopy. Nat. Med. 2007; 13: 1382–1387.
- 23
Harris T,
Eliyahu G,
Frydman L,
Degani H. Kinetics of hyperpolarized 13C1-pyruvate transport and metabolism in living human breast cancer cells. Proc. Natl. Acad. Sci. U. S. A. 2009; 106: 18 131–18 136.
- 24
Merritt ME,
Harrison C,
Storey C,
Jeffrey FM,
Sherry AD,
Malloy CR. Hyperpolarized 13C allows a direct measure of flux through a single enzyme-catalyzed step by NMR. Proc. Natl. Acad. Sci. U. S. A. 2007; 104: 19 773–19 777.
- 25
Keshari KR,
Wilson DM,
Chen AP,
Bok R,
Larson PE,
Hu S,
Van Criekinge M,
Macdonald JM,
Vigneron DB,
Kurhanewicz J. Hyperpolarized [2-13C]-fructose: a hemiketal DNP substrate for in vivo metabolic imaging. J. Am. Chem. Soc. 2009; 131: 17 591–17 596.
- 26
Gallagher FA,
Kettunen MI,
Day SE,
Hu DE,
Ardenkjaer-Larsen JH,
Zandt R,
Jensen PR,
Karlsson M,
Golman K,
Lerche MH,
Brinkdle KM. Magnetic resonance imaging of pH in vivo using hyperpolarized 13C-labelled bicarbonate. Nature 2008; 453: 940–943.
- 27
Chen AP,
Kurhanewicz J,
Bok R,
Xu D,
Joun D,
Zhang V,
Nelson SJ,
Hurd RE,
Vigneron DB. Feasibility of using hyperpolarized [1-13C]lactate as a substrate for in vivo metabolic 13C MRSI studies. Magn. Reson. Imaging 2008; 26: 721–726.
- 28
Kadkhodaei M,
Wu H,
Brant DA. Conformational dynamics of the (1➔4)- and (1➔6)-linked α-D-glucans using 13C-NMR relaxation. Biopolymers 1991; 31: 1581–1592.
- 29
Rivenzon-Segal D,
Rushkin E,
Polak-Charcon S,
Degani H. Glucose transporters and transport kinetics in retinoic acid-differentiated T47D human breast cancer cells. Am. J. Physiol. Endocrinol. Metab. 2000; 279 (3): E508–E519.
- 30
Curzon EH,
Hawkes GE,
Randall EW,
Britton HG,
Fazakerley GV. Conformational analysis of 2- and 3-phosphoglyceric acids by 1H and 13C nuclear magnetic resonance spectroscopy. J. Chem. Soc. Perkin Trans. 2 1981; 3: 494–499.
- 31
Massiot D,
Fayon F,
Capron M,
King I,
Le Calve S,
Alonso B,
Durand JO,
Bujoli B,
Gan ZH,
Hoatson G. Modelling one- and two-dimensional solid-state NMR spectra. Magn. Reson. Chem. 2002; 40: 70–76.
- 32
Forsen S,
Hoffman RA. Study of moderately rapid chemical exchange reactions by means of nuclear magnetic double resonance. J. Chem. Phys. 1963; 39: 2892–2901.
- 33
Meier S,
Karlsson M,
Jensen PR,
Lerche MH,
Duus JO. Metabolic pathway visualization in living yeast by DNP-NMR. Mol. Biosyst. 2011; 7: 2834–2836.
- 34
Meier S,
Jensen PR,
Duss JØ. Real-time detection of central carbon metabolism in living Escherichia coli and its response to perturbations. FEBS Lett. 2011; 585: 3133–3138.
- 35
Meier S,
Jensen PR,
Duss JØ. Direct observation of metabolic differences in living Escherichia coli strains K-12 and BL21. ChemBioChem. 2011; 13: 308–310.
- 36
Hugo F,
Mazurek S,
Zander U,
Eigenbrodt E. In vitro effect of extracellular AMP on MCF-7 breast cancer cells: inhibition of glycolysis and cell proliferation. J. Cell. Physiol. 1992; 153: 539–549.
- 37
Thangaraju M,
Carswell KN,
Prasad PD,
Ganapathy V. Colon cancer cells maintain low levels of pyruvate to avoid cell death caused by inhibition of HDAC1/HDAC3. Biochem. J. 2009; 417: 379–389.
- 38
Noh K,
Gronke K,
Luo B,
Takors R,
Oldiges M,
Wiechert W. Metabolic flux analysis at ultra short time scale: isotopically non-stationary 13C labeling experiments. J. Biotechnol. 2007; 129: 249–267.
- 39
Gatenby RA,
Gillies RJ. Why do cancers have high aerobic glycolysis? Nat. Rev. Cancer 2004; 4: 891–899.
- 40
Kim JW,
Dang CV. Cancer's molecular sweet tooth and the Warburg effect. Cancer Res. 2006; 66: 8927–8930.
- 41
DeBerardinis RJ,
Lum JJ,
Hatzivassiliou G,
Thompson CB. Brick by brick: metabolism and tumor cell growth. Cell Metab. 2008; 7: 11–20.
- 42
Vander Heiden MG,
Cantley LC,
Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009; 324: 1029–1033.
- 43
Lunt SY,
Vander Heiden MG. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu. Rev. Cell Dev. Biol. 2011; 27: 441–464.
- 44
Hirayama A,
Kami K,
Sugimoto M,
Sugawara M,
Toki N,
Onozuka H,
Kinoshita T,
Saito N,
Ochiai A,
Tomita M,
Esumi H,
Soga T. Quantitative metabolome profiling of colon and stomach cancer microenvironment by capillary electrophoresis time-of-flight mass spectrometry. Cancer Res. 2009; 69: 4918–4925.
- 45
Muruganandham M,
Alfieri AA,
Matei C,
Chen Y,
Sukenick G,
Schemainda I,
Hasmann M,
Saltz LB,
Koutcher JA. Metabolic signatures associated with a NAD synthesis inhibitor – induced tumor apoptosis identified by 1H-decoupled-31P magnetic resonance spectroscopy. Clin. Cancer Res. 2005; 11: 3503–3513.