Volume 23, Issue 7 p. 803-820
Special Issue Review Article

Twenty-five pitfalls in the analysis of diffusion MRI data

Derek K. Jones

Corresponding Author

Derek K. Jones

CUBRIC, Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff, UK

CUBRIC, School of Psychology, Cardiff University, Park Place, Cardiff, CF10 3AT, UK.Search for more papers by this author
Mara Cercignani

Mara Cercignani

Neuroimaging Laboratory, Santa Lucia Foundation, IRCCS, Rome, Italy

Search for more papers by this author
First published: 29 September 2010
Citations: 645

This article is published in NMR in Biomedicine as a special issue on Progress in Diffusion-Weighted Imaging: Concepts, Techniques, and Applications to the Central Nervous System, edited by Jens H. Jensen and Joseph A. Helpern, Center for Biomedical Imaging, Department of Radiology, NYU School of Medicine, New York, NY, USA.

Abstract

Obtaining reliable data and drawing meaningful and robust inferences from diffusion MRI can be challenging and is subject to many pitfalls. The process of quantifying diffusion indices and eventually comparing them between groups of subjects and/or correlating them with other parameters starts at the acquisition of the raw data, followed by a long pipeline of image processing steps. Each one of these steps is susceptible to sources of bias, which may not only limit the accuracy and precision, but can lead to substantial errors. This article provides a detailed review of the steps along the analysis pipeline and their associated pitfalls. These are grouped into 1 pre-processing of data; 2 estimation of the tensor; 3 derivation of voxelwise quantitative parameters; 4 strategies for extracting quantitative parameters; and finally 5 intra-subject and inter-subject comparison, including region of interest, histogram, tract-specific and voxel-based analyses. The article covers important aspects of diffusion MRI analysis, such as motion correction, susceptibility and eddy current distortion correction, model fitting, region of interest placement, histogram and voxel-based analysis. We have assembled 25 pitfalls (several previously unreported) into a single article, which should serve as a useful reference for those embarking on new diffusion MRI-based studies, and as a check for those who may already be running studies but may have overlooked some important confounds. While some of these problems are well known to diffusion experts, they might not be to other researchers wishing to undertake a clinical study based on diffusion MRI. Copyright © 2010 John Wiley & Sons, Ltd.