Developing MR reporter genes: promises and pitfalls†
Assaf A. Gilad
Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
Search for more papers by this authorPaul T. Winnard Jr
Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
Search for more papers by this authorPeter C. M. van Zijl
Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore MD, USA
Search for more papers by this authorCorresponding Author
Jeff W. M. Bulte
Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, and Institute for Cell Engineering, Johns Hopkins University School of Medicine, 217 Traylor Bldg, 720 Rutland Ave, Baltimore, MD 21205-2195, USA.Search for more papers by this authorAssaf A. Gilad
Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
Search for more papers by this authorPaul T. Winnard Jr
Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
Search for more papers by this authorPeter C. M. van Zijl
Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore MD, USA
Search for more papers by this authorCorresponding Author
Jeff W. M. Bulte
Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, and Institute for Cell Engineering, Johns Hopkins University School of Medicine, 217 Traylor Bldg, 720 Rutland Ave, Baltimore, MD 21205-2195, USA.Search for more papers by this authorAssaf A. Gilad and Paul T. Winnard Jr contributed equally to this paper.
Abstract
MR reporter genes have the potential to monitor transgene expression non-invasively in real time at high resolution. These genes can be applied to interrogate the efficacy of gene therapy, to assess cellular differentiation, cell trafficking, and specific metabolic activity, and also assess changes in the microenvironment. Efforts toward the development of MR reporter genes have been made for at least a decade, but, despite these efforts, the field is still in its early developmental stage. This reflects the fact that there are potential pitfalls, caused by the low sensitivity of detection, the need for substrates with their associated undesirable pharmacokinetics, and/or the difficult and, in some cases, delayed interpretation of signal changes. Nevertheless, significant progress has been made during the last few years. Whereas enzyme-based reporters were initially applied to NMR spectroscopic monitoring of changes in phosphor and fluorine metabolism, MRI-based approaches are now emerging that rely on: (1) enzyme-based cleavage of functional groups that block water (proton) exchange or protein binding of MR contrast agents; (2) expression of surface receptors that enable binding of specific MR contrast agents; (3) expression of para- and anti-ferromagnetic (metallo)proteins involved with iron metabolism, such as tyrosinase, transferrin receptor, and ferritin. After an introduction to the basic principles of designing promoters, expression vectors, and cloning of transgenes, a fresh look is provided on the use of reporter genes for optical (including bioluminescent) and nuclear imaging, with which MR reporter genes compete. Although progress in the use of MR reporter genes has been slow, newer strategies that use metalloproteins or alternative contrast mechanisms, with no need for substrates, promise rapid growth potential for this field. Copyright © 2007 John Wiley & Sons, Ltd.
REFERENCES
- 1 Jessani N, Humphrey M, McDonald WH, Niessen S, Masuda K, Gangadharan B, Yates JR., 3rd, Mueller BM, Cravatt BF. Carcinoma and stromal enzyme activity profiles associated with breast tumor growth in vivo. Proc. Natl. Acad. Sci. USA 2004; 101: 13756–13761.
- 2 Want EJ, Cravatt BF, Siuzdak G. The expanding role of mass spectrometry in metabolite profiling and characterization. Chembiochem. 2005; 6: 1941–1951.
- 3 Millenaar FF, Okyere J, May ST, van Zanten M, Voesenek LA, Peeters AJ. How to decide? Different methods of calculating gene expression from short oligonucleotide array data will give different results. BMC. Bioinformatics 2006; 7: 137.
- 4 Gradin K, McGuire J, Wenger RH, Kvietikova I, Whitelaw ML, Toftgard R, Tora L, Gassmann M, Poellinger L. Functional interference between hypoxia and dioxin signal transduction pathways: competition for recruitment of the Arnt transcription factor. Mol. Cell Biol. 1996; 16: 5221–5231.
- 5 Kallio PJ, Okamoto K, O'Brien S, Carrero P, Makino Y, Tanaka H, Poellinger L. Signal transduction in hypoxic cells: inducible nuclear translocation and recruitment of the CBP/p300 coactivator by the hypoxia-inducible factor-1alpha. EMBO J. 1998; 17: 6573–6586.
- 6 Johansen TE, Scholler MS, Tolstoy S, Schwartz TW. Biosynthesis of peptide precursors and protease inhibitors using new constitutive and inducible eukaryotic expression vectors. FEBS Lett. 1990; 267: 289–294.
- 7 Keller C, Capecchi MR. New genetic tactics to model alveolar rhabdomyosarcoma in the mouse. Cancer Res. 2005; 65: 7530–7532.
- 8 Borkhardt A, Heidenreich O. RNA interference as a potential tool in the treatment of leukaemia. Expert. Opin. Biol. Ther. 2004; 4: 1921–1929.
- 9 Cathomen T. AAV vectors for gene correction. Curr. Opin. Mol. Ther. 2004; 6: 360–366.
- 10 Chun YS, Choi E, Kim TY, Kim MS, Park JW. A dominant-negative isoform lacking exons 11 and 12 of the human hypoxia-inducible factor-1alpha gene. Biochem. J. 2002; 362: 71–79.
- 11 Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD. Molecular Biology of the Cell, 3rd edn. Garland Publishing Inc.: New York, 1994.
- 12 Woodcock CL, Frado LL, Rattner JB. The higher-order structure of chromatin: evidence for a helical ribbon arrangement. J. Cell Biol. 1984; 99: 42–52.
- 13 Mullinger AM, Johnson RT. The organization of supercoiled DNA from human chromosomes. J. Cell Sci. 1979; 38: 369–389.
- 14 Mullinger AM, Johnson RT. Units of chromosome replication and packing. J. Cell Sci. 1983; 64: 179–193.
- 15 Papadakis ED, Nicklin SA, Baker AH, White SJ. Promoters and control elements: designing expression cassettes for gene therapy. Curr. Gene Ther. 2004; 4: 89–113.
- 16 Wuarin J, Schibler U. Physical isolation of nascent RNA chains transcribed by RNA polymerase II: evidence for cotranscriptional splicing. Mol. Cell Biol. 1994; 14: 7219–7225.
- 17 Foecking MK, Hofstetter H. Powerful and versatile enhancer-promoter unit for mammalian expression vectors. Gene 1986; 45: 101–105.
- 18 Gorman CM, Merlino GT, Willingham MC, Pastan I, Howard BH. The Rous sarcoma virus long terminal repeat is a strong promoter when introduced into a variety of eukaryotic cells by DNA-mediated transfection. Proc. Natl. Acad. Sci. USA 1982; 79: 6777–6781.
- 19 Gorman CM, Moffat LF, Howard BH. Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol. Cell Biol. 1982; 2: 1044–1051.
- 20 Laimins LA, Khoury G, Gorman C, Howard B, Gruss P. Host- specific activation of transcription by tandem repeats from simian virus 40 and Moloney murine sarcoma virus. Proc. Natl. Acad. Sci. USA 1982; 79: 6453–6457.
- 21 Martin-Gallardo A, Montoya-Zavala M, Kelder B, Taylor J, Chen H, Leung FC, Kopchick JJ. A comparison of bovine growth-hormone gene expression in mouse L cells directed by the Moloney murine-leukemia virus long terminal repeat, simian virus-40 early promoter or cytomegalovirus immediate-early promoter. Gene 1988; 70: 51–56.
- 22 Chung S, Andersson T, Sonntag KC, Bjorklund L, Isacson O, Kim KS. Analysis of different promoter systems for efficient transgene expression in mouse embryonic stem cell lines. Stem Cells 2002; 20: 139–145.
- 23 Donis JA, Ventosa-Michelman M, Neve RL. Comparison of expression of a series of mammalian vector promoters in the neuronal cell lines PC12 and HT4. Biotechniques 1993; 15: 786–787.
- 24 Gill DR, Smyth SE, Goddard CA, Pringle IA, Higgins CF, Colledge WH, Hyde SC. Increased persistence of lung gene expression using plasmids containing the ubiquitin C or elongation factor 1alpha promoter. Gene Ther. 2001; 8: 1539–1546.
- 25 Mizushima S, Nagata S. pEF-BOS, a powerful mammalian expression vector. Nucleic Acids Res. 1990; 18: 5322.
- 26 Winnard P Jr, Mironchik Y, Raman V. Robust expression of transgenes in MCF-7 breast cancer cells is expression vector-dependent. Biotechniques 2004; 37: 370, 372, 374.
- 27 Allamane S, Ratel D, Jourdes P, Berger F, Benabid AL, Wion D. p53 Status and gene transfer experiments using CMV enhancer/promoter. Biochem. Biophys. Res. Commun. 2001; 280: 45–47.
- 28 Brooks AR, Harkins RN, Wang P, Qian HS, Liu P, Rubanyi GM. Transcriptional silencing is associated with extensive methylation of the CMV promoter following adenoviral gene delivery to muscle. J. Gene Med. 2004; 6: 395–404.
- 29 Gopalkrishnan RV, Christiansen KA, Goldstein NI, DePinho RA, Fisher PB. Use of the human EF-1alpha promoter for expression can significantly increase success in establishing stable cell lines with consistent expression: a study using the tetracycline- inducible system in human cancer cells. Nucleic Acids Res. 1999; 27: 4775–4782.
- 30 Guo ZS, Wang LH, Eisensmith RC, Woo SL. Evaluation of promoter strength for hepatic gene expression in vivo following adenovirus-mediated gene transfer. Gene Ther. 1996; 3: 802–810.
- 31 Loser P, Jennings GS, Strauss M, Sandig V. Reactivation of the previously silenced cytomegalovirus major immediate-early promoter in the mouse liver: involvement of NFkappaB. J. Virol. 1998; 72: 180–190.
- 32 Najjar SM, Lewis RE. Persistent expression of foreign genes in cultured hepatocytes: expression vectors. Gene 1999; 230: 41–45.
- 33 Miyazaki J, Takaki S, Araki K, Tashiro F, Tominaga A, Takatsu K, Yamamura K. Expression vector system based on the chicken beta-actin promoter directs efficient production of interleukin-5. Gene 1989; 79: 269–277.
- 34 Morita A, Ariizumi K, Ritter R 3rd, Jester JV, Kumamoto T, Johnston SA, Takashima A. Development of a Langerhans cell-targeted gene therapy format using a dendritic cell-specific promoter. Gene Ther. 2001; 8: 1729–1737.
- 35 Ozturk-Winder F, Renner M, Klein D, Muller M, Salmons B, Gunzburg WH. The murine whey acidic protein promoter directs expression to human mammary tumors after retroviral transduction. Cancer Gene Ther. 2002; 9: 421–431.
- 36 Ribault S, Neuville P, Mechine-Neuville A, Auge F, Parlakian A, Gabbiani G, Paulin D, Calenda V. Chimeric smooth muscle-specific enhancer/promoters: valuable tools for adenovirus-mediated cardiovascular gene therapy. Circ. Res. 2001; 88: 468–475.
- 37 Winnard P Jr, Raman V. Real time non-invasive imaging of receptor-ligand interactions in vivo. J. Cell Biochem. 2003; 90: 454–463.
- 38 Shirakawa T, Gotoh A, Wada Y, Kamidono S, Ko SC, Kao C, Gardner TA, Chung LW. Tissue-specific promoters in gene therapy for the treatment of prostate cancer. Mol. Urol. 2000; 4: 73–82.
- 39 Stoff-Khalili MA, Stoff A, Rivera AA, Banerjee NS, Everts M, Young S, Siegal GP, Richter DF, Wang M, Dall P, Mathis JM, Zhu ZB, Curiel DT. Preclinical evaluation of transcriptional targeting strategies for carcinoma of the breast in a tissue slice model system. Breast Cancer Res. 2005; 7: R1141–1152.
- 40 Gazit G, Hung G, Chen X, Anderson WF, Lee AS. Use of the glucose starvation-inducible glucose-regulated protein 78 promoter in suicide gene therapy of murine fibrosarcoma. Cancer Res. 1999; 59: 3100–3106.
- 41 Lee JY, Lee YS, Kim JM, Kim KL, Lee JS, Jang HS, Shin IS, Suh W, Jeon ES, Byun J, Kim DK. A novel chimeric promoter that is highly responsive to hypoxia and metals. Gene Ther. 2006; 13: 857–868.
- 42 Ray P, De A, Min JJ, Tsien RY, Gambhir SS. Imaging tri-fusion multimodality reporter gene expression in living subjects. Cancer Res. 2004; 64: 1323–1330.
- 43 Lu Y. Recombinant adeno-associated virus as delivery vector for gene therapy: a review. Stem Cells Dev. 2004; 13: 133–145.
- 44 Ignowski JM, Schaffer DV. Kinetic analysis and modeling of firefly luciferase as a quantitative reporter gene in live mammalian cells. Biotechnol. Bioeng. 2004; 86: 827–834.
- 45 Shimomura O. The discovery of aequorin and green fluorescent protein. J. Microsc. 2005; 217: 1–15.
- 46 Shimomura O, Johnson FH, Morise H. Mechanism of the luminescent intramolecular reaction of aequorin. Biochemistry 1974; 13: 3278–3286.
- 47 Morise H, Shimomura O, Johnson FH, Winant J. Intermolecular energy transfer in the bioluminescent system of Aequorea. Biochemistry 1974; 13: 2656–2662.
- 48 Yang F, Moss LG, Phillips GN Jr. The molecular structure of green fluorescent protein. Nat. Biotechnol. 1996; 14: 1246–1251.
- 49 Cody CW, Prasher DC, Westler WM, Prendergast FG, Ward WW. Chemical structure of the hexapeptide chromophore of the Aequorea green-fluorescent protein. Biochemistry 1993; 32: 1212–1218.
- 50 Zacharias DA, Tsien RY. Molecular biology and mutation of green fluorescent protein. Methods Biochem. Anal. 2006; 47: 83–120.
- 51 Zolotukhin S, Potter M, Hauswirth WW, Guy J, Muzyczka NA. “humanized” green fluorescent protein cDNA adapted for high-level expression in mammalian cells. J. Virol. 1996; 70: 4646–4654.
- 52 Crameri A, Whitehorn EA, Tate E, Stemmer WP. Improved green fluorescent protein by molecular evolution using DNA shuffling. Nat. Biotechnol. 1996; 14: 315–319.
- 53 Ward WW, Bokman SH. Reversible denaturation of Aequorea green-fluorescent protein: physical separation and characterization of the renatured protein. Biochemistry 1982; 21: 4535–4540.
- 54 Goodison S, Kawai K, Hihara J, Jiang P, Yang M, Urquidi V, Hoffman RM, Tarin D. Prolonged dormancy and site-specific growth potential of cancer cells spontaneously disseminated from nonmetastatic breast tumors as revealed by labeling with green fluorescent protein. Clin. Cancer Res. 2003; 9: 3808–3814.
- 55 Henriksson KC, Almgren MA, Thurlow R, Varki NM, Chang CL. A fluorescent orthotopic mouse model for reliable measurement and genetic modulation of human neuroblastoma metastasis. Clin. Exp. Metastasis 2004; 21: 563–570.
- 56 Hoffman RM. Imaging tumor angiogenesis with fluorescent proteins. APMIS 2004; 112: 441–449.
- 57 Peyruchaud O, Winding B, Pecheur I, Serre CM, Delmas P, Clezardin P. Early detection of bone metastases in a murine model using fluorescent human breast cancer cells: application to the use of the bisphosphonate zoledronic acid in the treatment of osteolytic lesions. J. Bone. Miner. Res. 2001; 16: 2027–2034.
- 58 Shinji S, Ishiwata T, Tajiri T, Tanaka N, Seya T, Kawahara K, Yokoyama M, Naito Z. External whole-body image of EGFP gene expression. J. Nippon. Med. Sch. 2003; 70: 462–463.
- 59 Umeoka T, Kawashima T, Kagawa S, Teraishi F, Taki M, Nishizaki M, Kyo S, Nagai K, Urata Y, Tanaka N, Fujiwara T. Visualization of intrathoracically disseminated solid tumors in mice with optical imaging by telomerase-specific amplification of a transferred green fluorescent protein gene. Cancer. Res. 2004; 64: 6259–6265.
- 60 Schmitt CA, Fridman JS, Yang M, Baranov E, Hoffman RM, Lowe SW. Dissecting p53 tumor suppressor functions in vivo. Cancer Cell 2002; 1: 289–298.
- 61 Rice BW, Cable MD, Nelson MB. In vivo imaging of light-emitting probes. J. Biomed. Opt. 2001; 6: 432–440.
- 62 Troy T, Jekic-McMullen D, Sambucetti L, Rice B. Quantitative comparison of the sensitivity of detection of fluorescent and bioluminescent reporters in animal models. Mol. Imaging 2004; 3: 9–23.
- 63 Weissleder R. A clearer vision for in vivo imaging. Nat. Biotechnol. 2001; 19: 316–317.
- 64 Zhao H, Doyle TC, Coquoz O, Kalish F, Rice BW, Contag CH. Emission spectra of bioluminescent reporters and interaction with mammalian tissue determine the sensitivity of detection in vivo. J. Biomed. Opt. 2005; 10: 41210.
- 65 Shaner NC, Campbell RE, Steinbach PA, Giepmans BN, Palmer AE, Tsien RY. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat. Biotechnol. 2004; 22: 1567–1572.
- 66 Verkhusha VV, Lukyanov KA. The molecular properties and applications of Anthozoa fluorescent proteins and chromoproteins. Nat. Biotechnol. 2004; 22: 289–296.
- 67 Miyawaki A. Innovations in the imaging of brain functions using fluorescent proteins. Neuron 2005; 48: 189–199.
- 68 Wang L, Jackson WC, Steinbach PA, Tsien RY. Evolution of new nonantibody proteins via iterative somatic hypermutation. Proc. Natl. Acad. Sci. USA 2004; 101: 16745–16749.
- 69 de Wet JR, Wood KV, Helinski DR, DeLuca M. Cloning of firefly luciferase cDNA and the expression of active luciferase in Escherichia coli. Proc. Natl. Acad. Sci. USA 1985; 82: 7870–7873.
- 70 Keller GA, Gould S, Deluca M, Subramani S. Firefly luciferase is targeted to peroxisomes in mammalian cells. Proc. Natl. Acad. Sci. USA 1987; 84: 3264–3268.
- 71 Baggett B, Roy R, Momen S, Morgan S, Tisi L, Morse D, Gillies RJ. Thermostability of firefly luciferases affects efficiency of detection by in vivo bioluminescence. Mol. Imaging 2004; 3: 324–332.
- 72 White PJ, Squirrell DJ, Arnaud P, Lowe CR, Murray JA. Improved thermostability of the North American firefly luciferase: saturation mutagenesis at position 354. Biochem. J. 1996; 319(Pt 2): 343–350.
- 73 Branchini BR, Southworth TL, Khattak NF, Michelini E, Roda A. Red- and green-emitting firefly luciferase mutants for bioluminescent reporter applications. Anal. Biochem. 2005; 345: 140–148.
- 74 Bronstein I, Fortin J, Stanley PE, Stewart GS, Kricka LJ. Chemiluminescent and bioluminescent reporter gene assays. Anal. Biochem. 1994; 219: 169–181.
- 75 Inouye S, Ohmiya Y, Toya Y, Tsuji FI. Imaging of luciferase secretion from transformed Chinese hamster ovary cells. Proc. Natl. Acad. Sci. USA 1992; 89: 9584–9587.
- 76 White MR, Masuko M, Amet L, Elliott G, Braddock M, Kingsman AJ, Kingsman SM. Real-time analysis of the transcriptional regulation of HIV and hCMV promoters in single mammalian cells. J. Cell Sci. 1995; 108(Pt 2): 441–455.
- 77 Taubes G. Firefly gene lights up lab animals from inside out. Science 1997; 276: 1993.
- 78 Lu Y, Dang H, Middleton B, Zhang Z, Washburn L, Campbell-Thompson M, Atkinson MA, Gambhir SS, Tian J, Kaufman DL. Bioluminescent monitoring of islet graft survival after transplantation. Mol. Ther. 2004; 9: 428–435.
- 79 Kim DE, Schellingerhout D, Ishii K, Shah K, Weissleder R. Imaging of stem cell recruitment to ischemic infarcts in a murine model. Stroke 2004; 35: 952–957.
- 80 Tang Y, Shah K, Messerli SM, Snyder E, Breakefield X, Weissleder R. In vivo tracking of neural progenitor cell migration to glioblastomas. Hum. Gene Ther. 2003; 14: 1247–1254.
- 81 Costa GL, Sandora MR, Nakajima A, Nguyen EV, Taylor-Edwards C, Slavin AJ, Contag CH, Fathman CG, Benson JM. Adoptive immunotherapy of experimental autoimmune encephalomyelitis via T cell delivery of the IL-12 p40 subunit. J. Immunol. 2001; 167: 2379–2387.
- 82 Hardy J, Francis KP, DeBoer M, Chu P, Gibbs K, Contag CH. Extracellular replication of Listeria monocytogenes in the murine gall bladder. Science 2004; 303: 851–853.
- 83 Luker GD, Bardill JP, Prior JL, Pica CM, Piwnica-Worms D, Leib DA. Noninvasive bioluminescence imaging of herpes simplex virus type 1 infection and therapy in living mice. J. Virol. 2002; 76: 12149–12161.
- 84 Gross S, Piwnica-Worms D. Spying on cancer: molecular imaging in vivo with genetically encoded reporters. Cancer Cell 2005; 7: 5–15.
- 85 Anderson LM, Swaminathan S, Zackon I, Tajuddin AK, Thimmapaya B, Weitzman SA. Adenovirus-mediated tissue-targeted expression of the HSVtk gene for the treatment of breast cancer. Gene Ther. 1999; 6: 854–864.
- 86 Minn AJ, Kang Y, Serganova I, Gupta GP, Giri DD, Doubrovin M, Ponomarev V, Gerald WL, Blasberg R, Massague J. Distinct organ-specific metastatic potential of individual breast cancer cells and primary tumors. J. Clin. Invest. 2005; 115: 44–55.
- 87 Lyons SK, Lim E, Clermont AO, Dusich J, Zhu L, Campbell KD, Coffee RJ, Grass DS, Hunter J, Purchio T, Jenkins D. Noninvasive bioluminescence imaging of normal and spontaneously transformed prostate tissue in mice. Cancer Res. 2006; 66: 4701–4707.
- 88 Burgos JS, Rosol M, Moats RA, Khankaldyyan V, Kohn DB, Nelson MD Jr., Laug WE. Time course of bioluminescent signal in orthotopic and heterotopic brain tumors in nude mice. Biotechniques 2003; 34: 1184–1188.
- 89 Ntziachristos V, Ripoll J, Wang LV, Weissleder R. Looking and listening to light: the evolution of whole-body photonic imaging. Nat. Biotechnol. 2005; 23: 313–320.
- 90 Zacharakis G, Kambara H, Shih H, Ripoll J, Grimm J, Saeki Y, Weissleder R, Ntziachristos V. Volumetric tomography of fluorescent proteins through small animals in vivo. Proc. Natl. Acad. Sci. USA 2005; 102: 18252–18257.
- 91 Tjuvajev JG, Stockhammer G, Desai R, Uehara H, Watanabe K, Gansbacher B, Blasberg RG. Imaging the expression of transfected genes in vivo. Cancer Res. 1995; 55: 6126–6132.
- 92 Ivanova A, Ponomarev V, Ageyeva L, Doubrovin M, Serganova I, Vider E, Soghomonian S, Balatoni J, Finn R, Blasberg R, Gelovani Tjuvajev J. Imaging adoptive stem cell therapy with HSV-tk/GFP reporter gene. Mol. Imaging 2002; 1: 208–209.
- 93 Koehne G, Doubrovin M, Doubrovina E, Zanzonico P, Gallardo HF, Ivanova A, Balatoni J, Teruya-Feldstein J, Heller G, May C, Ponomarev V, Ruan S, Finn R, Blasberg RG, Bornmann W, Riviere I, Sadelain M, O'Reilly RJ, Larson SM, Tjuvajev JG. Serial in vivo imaging of the targeted migration of human HSV-TK-transduced antigen-specific lymphocytes. Nat. Biotechnol. 2003; 21: 405–413.
- 94 Dubey P, Su H, Adonai N, Du S, Rosato A, Braun J, Gambhir SS, Witte ON. Quantitative imaging of the T cell antitumor response by positron-emission tomography. Proc. Natl. Acad. Sci. USA 2003; 100: 1232–1237.
- 95 Ponomarev V, Doubrovin M, Lyddane C, Beresten T, Balatoni J, Bornman W, Finn R, Akhurst T, Larson S, Blasberg R, Sadelain M, Tjuvajev JG. Imaging TCR-dependent NFAT-mediated T-cell activation with positron emission tomography in vivo. Neoplasia 2001; 3: 480–488.
- 96 Soghomonyan SA, Doubrovin M, Pike J, Luo X, Ittensohn M, Runyan JD, Balatoni J, Finn R, Tjuvajev JG, Blasberg R, Bermudes D. Positron emission tomography (PET) imaging of tumor-localized Salmonella expressing HSV1-TK. Cancer Gene Ther. 2005; 12: 101–108.
- 97 Bettegowda C, Foss CA, Cheong I, Wang Y, Diaz L, Agrawal N, Fox J, Dick J, Dang LH, Zhou S, Kinzler KW, Vogelstein B, Pomper MG. Imaging bacterial infections with radiolabeled 1-(2′-deoxy-2′-fluoro-beta-D-arabinofuranosyl)-5-iodouracil. Proc. Natl. Acad. Sci. USA 2005; 102: 1145–1150.
- 98 Tjuvajev JG, Finn R, Watanabe K, Joshi R, Oku T, Kennedy J, Beattie B, Koutcher J, Larson S, Blasberg RG. Noninvasive imaging of herpes virus thymidine kinase gene transfer and expression: a potential method for monitoring clinical gene therapy. Cancer Res. 1996; 56: 4087–4095.
- 99 Chung JK. Sodium iodide symporter: its role in nuclear medicine. J. Nucl. Med. 2002; 43: 1188–1200.
- 100 Gambhir SS, Barrio JR, Phelps ME, Iyer M, Namavari M, Satyamurthy N, Wu L, Green LA, Bauer E, MacLaren DC, Nguyen K, Berk AJ, Cherry SR, Herschman HR. Imaging adenoviral-directed reporter gene expression in living animals with positron emission tomography. Proc. Natl. Acad. Sci. USA 1999; 96: 2333–2338.
- 101 Rogers BE, Rosenfeld ME, Khazaeli MB, Mikheeva G, Stackhouse MA, Liu T, Curiel DT, Buchsbaum DJ. Localization of iodine-125-mIP-Des-Met14- bombesin (7–13)NH2 in ovarian carcinoma induced to express the gastrin releasing peptide receptor by adenoviral vector-mediated gene transfer. J. Nucl. Med. 1997; 38: 1221–1229.
- 102 Koretsky AP, Traxler BA. The B isozyme of creatine kinase is active as a fusion protein in Escherichia coli: in vivo detection by 31P NMR. FEBS Lett. 1989; 243: 8–12.
- 103 Koretsky AP, Brosnan MJ, Chen LH, Chen JD, Van Dyke T. NMR detection of creatine kinase expressed in liver of transgenic mice: determination of free ADP levels. Proc. Natl. Acad. Sci. USA 1990; 87: 3112–3116.
- 104 Auricchio A, Zhou R, Wilson JM, Glickson JD. In vivo detection of gene expression in liver by 31P nuclear magnetic resonance spectroscopy employing creatine kinase as a marker gene. Proc. Natl. Acad. Sci. USA 2001; 98: 5205–5210.
- 105 Li Z, Qiao H, Lebherz C, Choi SR, Zhou X, Gao G, Kung HF, Rader DJ, Wilson JM, Glickson JD, Zhou R. Creatine kinase, a magnetic resonance-detectable marker gene for quantification of liver-directed gene transfer. Hum. Gene Ther. 2005; 16: 1429–1438.
- 106 Askenasy N, Koretsky AP. Transgenic livers expressing mitochondrial and cytosolic CK: mitochondrial CK modulates free ADP levels. Am. J. Physiol. Cell. Physiol. 2002; 282: C338–C346.
- 107 Weiss RG, Gerstenblith G, Bottomley PA. ATP flux through creatine kinase in the normal, stressed, and failing human heart. Proc. Natl. Acad. Sci. USA 2005; 102: 808–813.
- 108 Walter G, Barton ER, Sweeney HL. Noninvasive measurement of gene expression in skeletal muscle. Proc. Natl. Acad. Sci. USA 2000; 97: 5151–5155.
- 109 Ki S, Sugihara F, Kasahara K, Tochio H, Okada-Marubayashi A, Tomita S, Morita M, Ikeguchi M, Shirakawa M, Kokubo T. A novel magnetic resonance-based method to measure gene expression in living cells. Nucleic Acids Res. 2006; 34: e51.
- 110 Stegman LD, Rehemtulla A, Beattie B, Kievit E, Lawrence TS, Blasberg RG, Tjuvajev JG, Ross BD. Noninvasive quantitation of cytosine deaminase transgene expression in human tumor xenografts with in vivo magnetic resonance spectroscopy. Proc. Natl. Acad. Sci. USA 1999; 96: 9821–9826.
- 111 Cui W, Otten P, Li Y, Koeneman KS, Yu J, Mason RP. Novel NMR approach to assessing gene transfection: 4-fluoro- 2-nitrophenyl-beta-D-galactopyranoside as a prototype reporter molecule for beta-galactosidase. Magn. Reson. Med. 2004; 51: 616–620.
- 112 Moats RA, Fraser SE, Meade T. A “smart” magnetic resonance imaging agent that reports on specific enzyme activity. Angew Chem. Intl. Edn. Engl. 1997; 36: 726–728.
- 113 Louie AY, Huber MM, Ahrens ET, Rothbacher U, Moats R, Jacobs RE, Fraser SE, Meade TJ. In vivo visualization of gene expression using magnetic resonance imaging. Nat. Biotechnol. 2000; 18: 321–325.
- 114 Caravan P, Cloutier NJ, Greenfield MT, McDermid SA, Dunham SU, Bulte JW, Amedio JC Jr., Looby RJ, Supkowski RM, Horrocks WD Jr., McMurry TJ, Lauffer RB. The interaction of MS-325 with human serum albumin and its effect on proton relaxation rates. J. Am. Chem. Soc. 2002; 124: 3152–3162.
- 115
Nivorozhkin L,
Kolodziej AF,
Carava P,
Greenfield MT,
Lauffer RB,
McMurry TJ.
Enzyme-activated Gd3+ magnetic resonance imaging contrast agents with a prominent receptor-induced magnetization enhancement.
Angew Chem. Int. Ed.
2001;
40:
2903–2906.
10.1002/1521-3773(20010803)40:15<2903::AID-ANIE2903>3.0.CO;2-N CASPubMedWeb of Science®Google Scholar
- 116 Lauffer RB, McMurry TJ, Dunham SO, Scott DM, Parmelee DJ, Dumas S. Bioactivated diagnostic imaging contrast agents. US Patent 6,709,646. 2004.
- 117 Weissleder R, Tung CH, Mahmood U, Bogdanov A Jr. In vivo imaging of tumors with protease-activated near- infrared fluorescent probes. Nat. Biotechnol. 1999; 17: 375–378.
- 118 Kodibagkar VD, Yu J, Liu L, Hetherington HP, Mason RP. Imaging beta-galactosidase activity using (19)F chemical shift imaging of LacZ gene-reporter molecule 2-fluoro-4-nitrophenol- beta-d-galactopyranoside. Magn. Reson. Imaging 2006; 24: 959–962.
- 119 Cui W, Liu L, Adam A, Yu J, Li X, Mason RP. Detection of beta-galactosidase activity in a human tumor xenograft by 1H MRI in vivo using S-Gal. Proceedings of the International Society of Magnetic Resonance Medicine 2005; 13: 2593.
- 120 Aisen P, Listowsky I. Iron transport and storage proteins. Annu. Rev. Biochem. 1980; 49: 357–393.
- 121 Bulte JW, Zhang S, van Gelderen P, Herynek V, Jordan EK, Duncan ID, Frank JA. Neurotransplantation of magnetically labeled oligodendrocyte progenitors: magnetic resonance tracking of cell migration and myelination. Proc. Natl. Acad. Sci. USA 1999; 96: 15256–15261.
- 122 Koretsky A, Lin Y-J, Schorle H, Jaenisch R. Genetic control of MRI contrast by expression of the transferrin receptor. Proceedings of the International Society of Magnetic Resonance Medicine 1996; 4: 69.
- 123 Enochs WS, Hyslop WB, Bennett HF, Brown RD. 3rd, Koenig SH, Swartz HM. Sources of the increased longitudinal relaxation rates observed in melanotic melanoma. An in vitro study of synthetic melanins. Invest. Radiol. 1989; 24: 794–804.
- 124 Enochs WS, Petherick P, Bogdanova A, Mohr U, Weissleder R. Paramagnetic metal scavenging by melanin: MR imaging. Radiology 1997; 204: 417–423.
- 125 DeJordy JO, Bendel P, Horowitz A, Salomon Y, Degani H. Correlation of MR imaging and histologic findings in mouse melanoma. J. Magn. Reson. Imaging 1992; 2: 695–700.
- 126 Isiklar I, Leeds NE, Fuller GN, Kumar AJ. Intracranial metastatic melanoma: correlation between MR imaging characteristics and melanin content. AJR. Am. J. Roentgenol. 1995; 165: 1503–1512.
- 127 Weissleder R, Simonova M, Bogdanova A, Bredow S, Enochs WS, Bogdanov A Jr. MR imaging and scintigraphy of gene expression through melanin induction. Radiology 1997; 204: 425–429.
- 128 Alfke H, Stoppler H, Nocken F, Heverhagen JT, Kleb B, Czubayko F, Klose KJ. In vitro MR imaging of regulated gene expression. Radiology 2003; 228: 488–492.
- 129 Neel L. Proprietes magnetiques des ferrites - ferrimagnetisme et antiferromagnetisme. Annales de Physique 1948; 3: 137–198.
- 130 Neel L. Superparamagnetisme de grains tres fins antiferromagnetiques. Comptes. Rendus. Acad. Sci. 1961; 252: 4075–4080.
- 131 Bulte JW, Kraitchman DL. Iron oxide MR contrast agents for molecular and cellular imaging. NMR. Biomed. 2004; 17: 484–499.
- 132 Brooks RA, Vymazal J, Goldfarb RB, Bulte JW, Aisen P. Relaxometry and magnetometry of ferritin. Magn. Reson. Med. 1998; 40: 227–235.
- 133 Bulte JM, Vymazal J, Brooks RA, Pierpaoli C, Frank JA. Frequency dependence of MR relaxation times. II. Iron oxides. J. Magn. Reson. Imaging 1993; 3: 641–648.
- 134 Bulte JWM, Douglas T, Mann S, Frankel RB, Moskowitz BM, Brooks RA, Baumgarner CD, Vymazal J, Strub M-P, Frank JA. Magnetoferritin: characterization of a novel superparamagnetic MR contrast agent. J. Magn. Reson. Imaging 1994; 4: 497–505.
- 135 Bulte JW, Douglas T, Mann S, Vymazal J, Laughlin PG, Frank JA. Initial assessment of magnetoferritin biokinetics and proton relaxation enhancement in rats. Acad. Radiol. 1995; 2: 871–878.
- 136 Vymazal J, Brooks RA, Zak O, McRill C, Shen C, Di Chiro G. T1 and T2 of ferritin at different field strengths: effect on MRI. Magn. Reson. Med. 1992; 27: 368–374.
- 137 Gottesfeld Z, Neeman M. Ferritin effect on the transverse relaxation of water: NMR microscopy at 9.4 T. Magn. Reson. Med. 1996; 35: 514–520.
- 138 Cohen B, Dafni H, Meir G, Harmelin A, Neeman M. Ferritin as an endogenous MRI reporter for noninvasive imaging of gene expression in C6 glioma tumors. Neoplasia 2005; 7: 109–117.
- 139 Genove G, Demarco U, Xu H, Goins WF, Ahrens ET. A new transgene reporter for in vivo magnetic resonance imaging. Nat. Med. 2005; 450–454.
- 140 Deans AE, Wadghiri YZ, Bernas LM, Yu X, Rutt BK, Turnbull DH. Cellular MRI contrast via coexpression of transferrin receptor and ferritin. Magn. Reson. Med. 2006; 56: 51–59.
- 141 Bulte JW, Kraitchman DL. Monitoring cell therapy using iron oxide MR contrast agents. Curr. Pharm. Biotechnol. 2004; 5: 567–584.
- 142 Heyn C, Ronald JA, Mackenzie LT, MacDonald IC, Chambers AF, Rutt BK, Foster PJ. In vivo magnetic resonance imaging of single cells in mouse brain with optical validation. Magn. Reson. Med. 2006; 55: 23–29.
- 143 Shapiro EM, Sharer K, Skrtic S, Koretsky AP. In vivo detection of single cells by MRI. Magn. Reson. Med. 2006; 55: 242–249.
- 144 Vymazal J, Brooks RA, Bulte JW, Gordon D, Aisen P. Iron uptake by ferritin: NMR relaxometry studies at low iron loads. J. Inorg. Biochem. 1998; 71: 153–157.
- 145 Vymazal J, Zak O, Bulte JW, Aisen P, Brooks RA. T1 and T2 of ferritin solutions: effect of loading factor. Magn. Reson. Med. 1996; 36: 61–65.
- 146 Moore A, Josephson L, Bhorade RM, Basilion JP, Weissleder R. Human transferrin receptor gene as a marker gene for MR imaging. Radiology. 2001; 221: 244–250.
- 147 Weissleder R, Moore A, Mahmood U, Bhorade R, Benveniste H, Chiocca EA, Basilion JP. In vivo magnetic resonance imaging of transgene expression. Nat. Med. 2000; 6: 351–355.
- 148 Bulte JWM, Verkuyl JM, Herynek V, Katsanis E, Brocke S, Holla M, Frank JA. Magnetoimmunodetection of (transfected) ICAM-1 gene expression. Proceedings of the International Society of Magnetic Resonance Medicine 1998; 6: 307.
- 149 So PW, Hotee S, Herlihy AH, Bell JD. Generic method for imaging transgene expression. Magn. Reson. Med. 2005; 54: 218–221.
- 150 Mantyla T, Hakumaki JM, Huhtala T, Narvanen A, Yla-Herttuala S. Targeted magnetic resonance imaging of Scavidin-receptor in human umbilical vein endothelial cells in vitro. Magn. Reson. Med. 2006; 55: 800–804.
- 151 Josephson L, Perez JM, Weissleder R. Magnetic Nanosensors for the Detection of Oligonucleotide Sequences. Angew Chem. Int. Ed. 2001; 3204–3206.
- 152 Perez JM, Josephson L, O'Loughlin T, Hogemann D, Weissleder R. Magnetic relaxation switches capable of sensing molecular interactions. Nat. Biotechnol. 2002; 20: 816–820.
- 153 Diebel CE, Proksch R, Green CR, Neilson P, Walker MM. Magnetite defines a vertebrate magnetoreceptor. Nature 2000; 406: 299–302.
- 154 Grunberg K, Wawer C, Tebo BM, Schuler D. A large gene cluster encoding several magnetosome proteins is conserved in different species of magnetotactic bacteria. Appl. Environ. Microbiol. 2001; 67: 4573–4582.
- 155 Matsunaga T, Okamura Y. Genes and proteins involved in bacterial magnetic particle formation. Trends. Microbiol. 2003; 11: 536–541.
- 156 Fukuda Y, Okamura Y, Takeyama H, Matsunaga T. Dynamic analysis of a genomic island in Magnetospirillum sp. strain AMB-1 reveals how magnetosome synthesis developed. FEBS Lett. 2006; 580: 801–812.
- 157 McMahon MT, Gilad AA, Bulte JWM, Van Zijl PCM. Developing new multicolor protein MRI contrast agents. Proceedings of the International Society of Magnetic Resonance Medicine 2006; 14: 98.
- 158 Gilad AA, McMahon MT, Walczak P, Winnard Jr. PT, Raman V, van Laarhoven HWM, Skoglund CM, Bulte JWM, van Zijl PCM. Artificial reporter gene providing MRI contrast based on proton exchange. Nat. Biotech. 2007; 25: 217–219.
- 159 Contag CH, Spilman SD, Contag PR, Oshiro M, Eames B, Dennery P, Stevenson DK, Benaron DA. Visualizing gene expression in living mammals using a bioluminescent reporter. Photochem. Photobiol. 1997; 66: 523–531.
- 160 Yang M, Baranov E, Jiang P, Sun FX, Li XM, Li L, Hasegawa S, Bouvet M, Al-Tuwaijri M, Chishima T, Shimada H, Moossa AR, Penman S, Hoffman RM. Whole-body optical imaging of green fluorescent protein-expressing tumors and metastases. Proc. Natl. Acad. Sci. USA 2000; 97: 1206–1211.
- 161 Rattner JB, Hamkalo BA. Nucleosome packing in interphase chromatin. J. Cell. Biol. 1979; 81: 453–457.
- 162 Luker KE, Smith MC, Luker GD, Gammon ST, Piwnica-Worms H, Piwnica-Worms D. Kinetics of regulated protein-protein interactions revealed with firefly luciferase complementation imaging in cells and living animals. Proc. Natl. Acad. Sci. USA 2004; 101: 12288–12293.