Resistive pulse sensing as particle counting and sizing method in microfluidic systems: Designs and applications review
Corresponding Author
Tomas Vaclavek
Department of Bioanalytical Instrumentation, Institute of Analytical Chemistry of the CAS, Brno, Czech Republic
Department of Biochemistry, Masaryk University, Brno, Czech Republic
Correspondence
Tomas Vaclavek, Institute of Analytical Chemistry of the CAS, v. v. i. Veveri 967/97, 602 00 Brno, Czech Republic.
Email: [email protected]
Search for more papers by this authorJan Prikryl
Department of Bioanalytical Instrumentation, Institute of Analytical Chemistry of the CAS, Brno, Czech Republic
Search for more papers by this authorFrantisek Foret
Department of Bioanalytical Instrumentation, Institute of Analytical Chemistry of the CAS, Brno, Czech Republic
Search for more papers by this authorCorresponding Author
Tomas Vaclavek
Department of Bioanalytical Instrumentation, Institute of Analytical Chemistry of the CAS, Brno, Czech Republic
Department of Biochemistry, Masaryk University, Brno, Czech Republic
Correspondence
Tomas Vaclavek, Institute of Analytical Chemistry of the CAS, v. v. i. Veveri 967/97, 602 00 Brno, Czech Republic.
Email: [email protected]
Search for more papers by this authorJan Prikryl
Department of Bioanalytical Instrumentation, Institute of Analytical Chemistry of the CAS, Brno, Czech Republic
Search for more papers by this authorFrantisek Foret
Department of Bioanalytical Instrumentation, Institute of Analytical Chemistry of the CAS, Brno, Czech Republic
Search for more papers by this authorAbstract
Resistive pulse sensing is a well-known and established method for counting and sizing particles in ionic solutions. Throughout its development the technique has been expanded from detection of biological cells to counting nanoparticles and viruses, and even registering individual molecules, e.g., nucleotides in nucleic acids. This technique combined with microfluidic or nanofluidic systems shows great potential for various bioanalytical applications, which were hardly possible before microfabrication gained the present broad adoption. In this review, we provide a comprehensive overview of microfluidic designs along with electrode arrangements with emphasis on applications focusing on bioanalysis and analysis of single cells that were reported within the past five years.
CONFLICT OF INTEREST
The authors have declared no conflict of interest.
REFERENCES
- 1Zhang, H., Chon, C. H., Pan, X., Li, D., Methods for counting particles in microfluidic applications. Microfluid. Nanofluidics 2009, 7, 739–749.
- 2Graham, M., The Coulter principle: foundation of an industry. J. Assoc. Lab. Autom. 2003, 8, 72–81.
10.1016/S1535-5535(03)00023-6 Google Scholar
- 3Song, Y., Zhang, J., Li, D., Microfluidic and nanofluidic resistive pulse sensing: a review. Micromachines 2017, 8, 204.
- 4Shapiro, H. M., The evolution of cytometers. Cytometry 2004, 58A, 13–20.
- 5Cleland, A. N., Fraikin, J.-L., Meinhold, P., Monzon, F., NANOPARTICLE CHARACTERIZATION - One size does not fit all: nanoparticle Size analysis for nanomedicine applications. Drug Dev. Deliv. 2016.
- 6Yang, L., Yamamoto, T., Quantification of virus particles using nanopore-based resistive-pulse sensing Techniques. Front. Microbiol. 2016, 7, https://doi.org/10.3389/fmicb.2016.01500.
- 7Weatherall, E., Willmott, G. R., Applications of tunable resistive pulse sensing. The Analyst 2015, 140, 3318–3334.
- 8Fraikin, J.-L., Teesalu, T., McKenney, C. M., Ruoslahti, E., Cleland, A. N., A high-throughput label-free nanoparticle analyser. Nat. Nanotechnol. 2011, 6, 308.
- 9Branton, D., Deamer, D. W., Marziali, A., Bayley, H., Benner, S. A., Butler, T., Di Ventra, M., Garaj, S., Hibbs, A., Huang, X., Jovanovich, S. B., Krstic, P. S., Lindsay, S., Ling, X. S., Mastrangelo, C. H., Meller, A., Oliver, J. S., Pershin, Y. V., Ramsey, J. M., Riehn, R., Soni, G. V., Tabard-Cossa, V., Wanunu, M., Wiggin, M., Schloss, J. A., The potential and challenges of nanopore sequencing. Nat. Biotechnol. 2008, 26, 1146–1153.
- 10Li, W., Bell, N. A. W., Hernández-Ainsa, S., Thacker, V. V., Thackray, A. M., Bujdoso, R., Keyser, U. F., Single protein molecule detection by glass nanopores. ACS Nano 2013, 7, 4129–4134.
- 11Jain, M., Koren, S., Miga, K. H., Quick, J., Rand, A. C., Sasani, T. A., Tyson, J. R., Beggs, A. D., Dilthey, A. T., Fiddes, I. T., Malla, S., Marriott, H., Nieto, T., O'Grady, J., Olsen, H. E., Pedersen, B. S., Rhie, A., Richardson, H., Quinlan, A. R., Snutch, T. P., Tee, L., Paten, B., Phillippy, A. M., Simpson, J. T., Loman, N. J., Loose, M., Nanopore sequencing and assembly of a human genome with ultra-long reads. Nat. Biotechnol. 2018, 36, 338–345.
- 12Hong, J.-L., Lan, K.-C., Jang, L.-S., Electrical characteristics analysis of various cancer cells using a microfluidic device based on single-cell impedance measurement. Sens. Actuators B Chem. 2012, 173, 927–934.
- 13Hinkle, P., Westerhof, T. M., Qiu, Y., Mallin, D. J., Wallace, M. L., Nelson, E. L., Taborek, P., Siwy, Z. S., A hybrid resistive pulse-optical detection platform for microfluidic experiments. Sci. Rep. 2017, 7, https://doi.org/10.1038/s41598-017-10000-1.
- 14Errico, V., Ninno, A. D., Bertani, F. R., Businaro, L., Bisegna, P., Caselli, F., Mitigating positional dependence in coplanar electrode Coulter-type microfluidic devices. Sens. Actuators B Chem. 2017, 247, 580–586.
- 15Caselli, F., Bisegna, P., Simulation and performance analysis of a novel high-accuracy sheathless microfluidic impedance cytometer with coplanar electrode layout. Med. Eng. Phys. 2017, 48, 81–89.
- 16Feng, Y., Zhang, Y., Ying, C., Wang, D., Du, C., Nanopore-based Fourth-generation DNA Sequencing Technology. Genomics Proteomics Bioinformatics 2015, 13, 4–16.
- 17Piruska, A., Gong, M., Sweedler, J. V., Bohn, P. W., Nanofluidics in chemical analysis. Chem. Soc. Rev. 2010, 39, 1060–1072.
- 18Guo, J., Chen, L., Ai, Y., Cheng, Y., Li, C. M., Kang, Y., Wang, Z., Numerical and experimental characterization of solid-state micropore-based cytometer for detection and enumeration of biological cells. Electrophoresis 2015, 36, 737–743.
- 19Emaminejad, S., Paik, K.-H., Tabard-Cossa, V., Javanmard, M., Portable cytometry using microscale electronic sensing. Sens. Actuators B Chem. 2016, 224, 275–281.
- 20Weatherall, E., Hauer, P., Vogel, R., Willmott, G. R., Pulse size distributions in tunable resistive pulse sensing. Anal. Chem. 2016, 88, 8648–8656.
- 21Vogel, R., Willmott, G., Kozak, D., Roberts, G. S., Anderson, W., Groenewegen, L., Glossop, B., Barnett, A., Turner, A., Trau, M., Quantitative sizing of nano/microparticles with a tunable elastomeric pore sensor. Anal. Chem. 2011, 83, 3499–3506.
- 22Riordon, J., Nash, M., Calderini, M., Godin, M., Using active microfluidic flow focusing to sort particles and cells based on high-resolution volume measurements. Microelectron. Eng. 2014, 118, 35–40.
- 23Liu, Z., Li, J., Yang, J., Song, Y., Pan, X., Li, D., Improving particle detection sensitivity of a microfluidic resistive pulse sensor by a novel electrokinetic flow focusing method. Microfluid. Nanofluidics 2017, 21, https://doi.org/10.1007/s10404-016-1836-9.
- 24Yasaki, H., Yasui, T., Yanagida, T., Kaji, N., Kanai, M., Nagashima, K., Kawai, T., Baba, Y., Substantial expansion of detectable size range in ionic current sensing through pores by using a microfluidic bridge circuit. J. Am. Chem. Soc. 2017, 139, 14137–14142.
- 25Sun, J., Yang, J., Gao, Y., Xu, D., Li, D., Reference channel-based microfluidic resistance sensing for single yeast cell volume growth measurement. Microfluid. Nanofluidics 2017, 21, https://doi.org/10.1007/s10404-017-1864-0.
- 26Song, Y., Wang, C., Sun, R., Pan, X., Li, D., Effect of induced surface charge of metal particles on particle sizing by resistive pulse sensing technique. J. Colloid Interface Sci. 2014, 423, 20–24.
- 27Zhu, Z., Xu, X., Fang, L., Pan, D., Huang, Q., Investigation of geometry-dependent sensing characteristics of microfluidic electrical impedance spectroscopy through modeling and simulation. Sens. Actuators B Chem. 2016, 235, 515–524.
- 28Xie, P., Cao, X., Lin, Z., Talukder, N., Emaminejad, S., Javanmard, M., Processing gain and noise in multi-electrode impedance cytometers: comprehensive electrical design methodology and characterization. Sens. Actuators B Chem. 2017, 241, 672–680.
- 29Liu, R., Wang, N., Kamili, F., Sarioglu, A. F., Microfluidic CODES: a scalable multiplexed electronic sensor for orthogonal detection of particles in microfluidic channels. Lab. Chip 2016, 16, 1350–1357.
- 30Nakajima, Y., Ukai, T., Shimizu, T., Ogata, K., Iwai, S., Takahashi, N., Aki, A., Mizuki, T., Maekawa, T., Hanajiri, T., Detection and analysis of targeted biological cells by electrophoretic Coulter method. Anal. Chem. 2017, 89, 12450–12457.
- 31Liu, F., Kc, P., Zhang, G., Zhe, J., Microfluidic magnetic bead assay for cell detection. Anal. Chem. 2016, 88, 711–717.
- 32Zand, K., Pham, T. D. A., Li, J., Zhou, W., Wallace, D. C., Burke, P. J., Resistive flow sensing of vital mitochondria with nanoelectrodes. Mitochondrion 2017, 37, 8–16.
- 33Carminati, M., Giacometti, M., Sampietro, M., Chiodini, S., Doles, T., Ferrari, G., Parallelizable microfluidic resistive on-line detector of micrometric aggregates of biopharmaceutical antibodies. Procedia Eng. 2016, 168, 1438–1441.
- 34Rodriguez-Trujillo, R., Ajine, M. A., Orzan, A., Mar, M. D., Larsen, F., Clausen, C. H., Svendsen, W. E., Label-free protein detection using a microfluidic Coulter-counter device. Sens. Actuators B Chem. 2014, 190, 922–927.
- 35Rajan, N. K., Rajauria, S., Ray, T., Pennathur, S., Cleland, A. N., A simple microfluidic aggregation analyzer for the specific, sensitive and multiplexed quantification of proteins in a serum environment. Biosens. Bioelectron. 2016, 77, 1062–1069.
- 36Unger, M. A., Chou, H.-P., Thorsen, T., Scherer, A., Quake, S. R., Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 2000, 288, 113.
- 37Song, Y., Li, M., Pan, X., Wang, Q., Li, D., Size-based cell sorting with a resistive pulse sensor and an electromagnetic pump in a microfluidic chip. Electrophoresis 2015, 36, 398–404.
- 38Rajauria, S., Axline, C., Gottstein, C., Cleland, A. N., High-speed discrimination and sorting of submicron particles using a microfluidic device. Nano Lett. 2015, 15, 469–475.
- 39Bürgel, S. C., Escobedo, C., Haandbæk, N., Hierlemann, A., On-chip electroporation and impedance spectroscopy of single-cells. Sens. Actuators B Chem. 2015, 210, 82–90.
- 40El Hasni, A., Schmitz, C., Bui-Göbbels, K., Bräunig, P., Jahnen-Dechent, W., Schnakenberg, U., Electrical impedance spectroscopy of single cells in hydrodynamic traps. Sens. Actuators B Chem. 2017, 248, 419–429.