Raman spectroscopy of yellow organic pigments of large Korean Buddhist paintings from the late Joseon dynasty (17th–19th centuries)
Na Ra Lee
Conservation Science Division, National Research Institute of Cultural Heritage, Daejeon, South Korea
Search for more papers by this authorJi Hyeon Yun
Conservation Science Division, National Research Institute of Cultural Heritage, Daejeon, South Korea
Search for more papers by this authorCorresponding Author
So Jin Kim
Conservation Science Division, National Research Institute of Cultural Heritage, Daejeon, South Korea
Correspondence
So Jin Kim, Conservation Science Division, National Research Institute of Cultural Heritage, Daejeon 34122, South Korea.
Email: [email protected]
Search for more papers by this authorNa Ra Lee
Conservation Science Division, National Research Institute of Cultural Heritage, Daejeon, South Korea
Search for more papers by this authorJi Hyeon Yun
Conservation Science Division, National Research Institute of Cultural Heritage, Daejeon, South Korea
Search for more papers by this authorCorresponding Author
So Jin Kim
Conservation Science Division, National Research Institute of Cultural Heritage, Daejeon, South Korea
Correspondence
So Jin Kim, Conservation Science Division, National Research Institute of Cultural Heritage, Daejeon 34122, South Korea.
Email: [email protected]
Search for more papers by this authorAbstract
The yellow coloring of the organic and inorganic pigments used in large Buddhist paintings during the late Joseon dynasty (17th–19th centuries) is herein analyzed using Raman spectroscopy and non-invasive component analysis via p-XRF. p-XRF analyses of 194 yellow points on 12 large Buddhist paintings confirmed the use of gold, orpiment, and organic pigments; however, the yellow chromophoric elements of the organic pigments were not detected. The confirmed colors ranged from light yellow (close to white) to bright and dark yellow, but microscopic analysis revealed no particles or crystals. Accurate identification of pigments comprising light elements or organic compounds is challenging, which limits their identification via p-XRF. In contrast, Raman spectroscopy of the samples presumed to be organic pigments detected gamboge in the samples, either alone, mixed with a white inorganic pigment such as lead white to express yellow, or overlaid upon such a pigment. These results demonstrate the utility of Raman spectroscopy in the analysis of organic pigments and provide a guide for the identification of coloring materials used in cultural heritage artifacts.
CONFLICT OF INTEREST STATEMENT
The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.
REFERENCES
- 1Y. S. Lee, M.A. thesis, Dongguk University (Seoul), 2004 (in Korean with English abstract).
- 2Y. S. Yoon, Gwaebul, Daewonsa, Paju 1995 (in Korean).
- 3M. H. Chung, Korean J Art History 2004, 243, 159. PMID: (in Korean). UCI: G704–000465.2002.236.001.
- 4E. W. Lee, J. H. Yoon, Y. M. Kwon, T. H. Shin, J. Conserv. Sci. 2020, 36(6), 519. (in Korean with English abstract). https://doi.org/10.12654/JCS.2020.36.6.08
10.12654/JCS.2020.36.6.08 Google Scholar
- 5S. H. Lee, The Color of Traditional Painting, Gail Art, Seoul 2012 (in Korean).
- 6E. B. Moon, Traditional Color of Korea, Ahngraphics Publishers, Paju 2012 (in Korean).
- 7S. K. Kim, J. S. Heo, H. H. Lee, M. S. Seo, M. S. Han, J. Conserv. Sci. 2013, 29(4), 379. (in Korean with English abstract). https://doi.org/10.12654/JCS.2013.29.4.08
10.12654/JCS.2013.29.4.08 Google Scholar
- 8E. Y. Yun, Y. H. Chang, J. Conserv. Sci. 2016, 32(4), 571. (in Korean with English abstract). https://doi.org/10.12654/JCS.2016.32.4.11
10.12654/JCS.2016.32.4.11 Google Scholar
- 9J. S. Kim, C. H. Lee, J. Conserv. Sci. 2019, 35(5), 403. (in Korean with English abstract). https://doi.org/10.12654/JCS.2019.35.5.03
10.12654/JCS.2019.35.5.03 Google Scholar
- 10P. Vandenabeele, B. Wehling, L. Moens, H. Edwards, M. De Reu, G. Van Hooydonk, Anal. Chim. Acta 2000, 407, 261. https://doi.org/10.1016/S0003-2670(99)00827-2
- 11M. S. Han, D. L. Kang, Y. W. Kim, H. H. Lee, J. J. Lee, I. S. Yang, J. H. Kim, G. H. Kim, G. O. Han, T. W. Ha, Y. N. Song, Non-destructive Pigment Analysis Guide Book, National Research Institute of Cultural Heritage, Daejeon 2016 (in Korean). ISBN: 978-89-299-0921-5 93600.
- 12M. Bouchard, D. C. Smith, Spectrochim. Acta Part A 2003, 59, 2247. https://doi.org/10.1016/S1386-1425(03)00069-6
- 13A. Križnar, M. V. Muñoz, F. de la Paz, M. A. Respaldiza, M. Vega, Archeo Sciences 2012, 36, 37. https://doi.org/10.4000/archeosciences.3712
10.4000/archeosciences.3712 Google Scholar
- 14L. A. Glinsman, Ph.D. thesis, University of Amsterdam (Amsterdam), 2004.
- 15M. Ferretti, J. Anal. At. Spectrom 2014, 29, 1753. https://doi.org/10.1039/C4JA00107A
- 16Q. G. Zeng, G. X. Zhang, J. H. Tan, C. W. Leung, J. Zuo, J. Raman Spectrosc. 2011, 42(6), 1311. https://doi.org/10.1002/jrs.2879
- 17Q. G. Zeng, G. X. Zhang, C. W. Leung, J. Zuo, Microchem. J. 2010, 96(2), 330. https://doi.org/10.1016/j.microc.2010.05.013
- 18P. Vandenabeele, H. G. M. Edwards, L. Moens, Chem. Rev. 2007, 107(3), 675. https://doi.org/10.1021/cr068036i
- 19F. Casadio, C. Daher, L. Bellot-Gurlet, Top. Curr. Chem. 2016, 374, 62. https://doi.org/10.1007/s41061-016-0061-z
- 20D. Bersani, C. Conti, P. Matousek, F. Pozzi, P. Vandenabeele, Anal. Methods 2016, 8, 8395. https://doi.org/10.1039/C6AY02327D
- 21D. Bersani, P. P. Lottici, J. Raman Spectrosc. 2016, 47(5), 499. https://doi.org/10.1002/jrs.4914
- 22V. Košařová, D. Hradil, I. Němec, P. Bezdička, V. Kanický, J. Raman Spectrosc. 2013, 44(11), 1570. https://doi.org/10.1002/jrs.4381
- 23R. J. H. Clark, C. R. Chim. 2002, 5(1), 7. https://doi.org/10.1016/S1631-0748(02)01341-3
- 24A. P. Kanth, M. R. Singh, Vib. Spectrosc. 2019, 104, 102947. https://doi.org/10.1016/j.vibspec.2019.102947
- 25M. C. Caggiani, A. Cosentino, A. Mangone, Microchem. J. 2016, 129, 123. https://doi.org/10.1016/j.microc.2016.06.020
- 26R. J. H. Clark, J. Mol. Struct. 2007, 834–836, 74. https://doi.org/10.1016/j.molstruc.2007.01.031
- 27I. Zmuda-Trzebiatowska, M. Wachowiak, A. Klisińska-Kopacz, G. Trykowski, G. Śliwiński, Spectrochim. Acta Part A 2015, 136, 793. https://doi.org/10.1016/j.saa.2014.09.096
- 28 「天工開物 (Cheongonggaemul)」, 1637.
- 29 「芥子園畵譜 (Gaejawonhwajeon)」, 1679.
- 30 「高麗史 (Goryeosa)」 918–1392.
- 31T. Bayerová, Stud. Conserv. 2018, 63, 171. https://doi.org/10.1080/00393630.2017.1327111
- 32Y. Chen, H. Zhang, X. Tian, C. Zhao, L. Cai, Y. Liu, L. Jia, H.-X. Yin, C. Chen, Food Chem. 2008, 109, 484. https://doi.org/10.1016/j.foodchem.2007.09.080
- 33M.-R. Van Calsteren, M. C. Bissonnette, F. Cormier, C. Dufresne, T. Ichi, J. C. Y. LeBlanc, D. Perreault, I. Roewer, J. Agric. Food Chem. 1997, 45, 1055. https://doi.org/10.1021/jf9603487
- 34S. Pfister, P. Meyer, A. Steck, H. Pfander, J. Agric. Food Chem. 1996, 44, 2612. https://doi.org/10.1021/jf950713e
- 35J. S. Park, Assoc. Asian Art History 2013, 15, 327. https://doi.org/10.17300/jodah.2013..15.012
10.17300/jodah.2013..15.012 Google Scholar
- 36J. J. Lee, J. Y. Ahn, Y. M. Yoo, K. M. Lee, M. S. Han, J. Conserv. Sci. 2017, 33(6), 431. https://doi.org/10.12654/JCS.2017.33.6.03
10.12654/JCS.2017.33.6.03 Google Scholar
- 37E. W. Lee, Y. J. Gyeong, J. H. Yoon, Y. M. Kwon, J. W. Song, M. S. Seo, J. J. Lee, J. Conserv. Sci. 2019, 35(6), 689. https://doi.org/10.12654/JCS.2019.35.6.12
10.12654/JCS.2019.35.6.12 Google Scholar
- 38J. J. Lee, Y. J. Gyeong, J. S. Lee, M. S. Seo, MUN HWA JAE Korean J. Cult. Herit. Stud. 2019, 52(4), 226. https://doi.org/10.22755/kjchs.2019.52.4.226
10.22755/kjchs.2019.52.4.226 Google Scholar
- 39G. Marucci, A. Beeby, A. W. Parker, C. E. Nicholson, Anal. Methods 2018, 10, 1219. https://doi.org/10.1039/C8AY00016F
- 40M. V. Cañamares, M. Leona, M. Bouchard, C. M. Grzywacz, J. Wouters, K. Trentelman, J. Raman Spectrosc. 2010, 41(4), 391. https://doi.org/10.1002/jrs.2462
- 41G. Burrafato, M. Calabrese, A. Cosentino, A. M. Gueli, S. O. Troja, A. Zuccarello, J. Raman Spectrosc. 2004, 35, 879. https://doi.org/10.1002/jrs.1229
- 42M. Ioele, A. Sodo, A. C. Municchia, M. A. Ricci, A. P. Russo, Appl. Phys. A: Mater. Sci. Process. 2016, 122, 1045. https://doi.org/10.1007/S00339-016-0580-Z
10.1007/s00339-016-0580-z Google Scholar
- 43T. Tripković, R. Vasić, A. Lolić, R. Baošić, Chem. Pap. 2022, 76, 3607. https://doi.org/10.1007/s11696-022-02110-6
- 44J. Shao, J. Zheng, J. Liu, C. M. Carr, J. Appl. Polym. Sci. 2005, 96(6), 1999. https://doi.org/10.1002/app.21346
- 45D. Puchowicz, M. Cieślak, in Recent Developments in Atomic Force Microscopy and Raman Spectroscopy for Materials Characterization, (Eds: C. S. Pathak, S. Kumar), IntechOpen, London 2021 Chapter 9.
- 46L.-L. Cho, Forensic Sci. J. 2007, 6(1), 55.
- 47E. Stanzani, D. Bersani, P. P. Lottici, P. Colomban, Vib. Spectrosc. 2016, 85, 62. https://doi.org/10.1016/j.vibspec.2016.03.027
- 48C. Razzetti, P. P. Lottici, Solid State Commun. 1979, 29, 361. https://doi.org/10.1016/0038-1098(79)90572-6
- 49I. M. Bell, R. J. H. Clark, P. J. Gibbs, Spectrochim. Acta Part A 1997, 53, 2159. https://doi.org/10.1016/S1386-1425(97)00140-6
- 50S. Bioletti, R. Leahy, J. Fields, B. Meehan, W. Blau, J. Raman Spectrosc. 2009, 40, 1043. https://doi.org/10.1002/jrs.2231
- 51J. H. Park, S. M. Lee, M. N. Kim, Econ. Environ. Geol. 2022, 55(3), 281. https://doi.org/10.9719/EEG.2022.55.3.281