Infrared multiple-angle incidence resolution spectrometry for vapor-deposited amorphous water
Takumi Nagasawa
Komaba Institute for Science and Department of Basic Science, The University of Tokyo, Meguro, Japan
Search for more papers by this authorNaoki Numadate
Komaba Institute for Science and Department of Basic Science, The University of Tokyo, Meguro, Japan
Search for more papers by this authorCorresponding Author
Tetsuya Hama
Komaba Institute for Science and Department of Basic Science, The University of Tokyo, Meguro, Japan
Correspondence
Tetsuya Hama, Komaba Institute for Science and Department of Basic Science, The University of Tokyo, Meguro 153-8902, Tokyo, Japan.
Email: [email protected]
Search for more papers by this authorTakumi Nagasawa
Komaba Institute for Science and Department of Basic Science, The University of Tokyo, Meguro, Japan
Search for more papers by this authorNaoki Numadate
Komaba Institute for Science and Department of Basic Science, The University of Tokyo, Meguro, Japan
Search for more papers by this authorCorresponding Author
Tetsuya Hama
Komaba Institute for Science and Department of Basic Science, The University of Tokyo, Meguro, Japan
Correspondence
Tetsuya Hama, Komaba Institute for Science and Department of Basic Science, The University of Tokyo, Meguro 153-8902, Tokyo, Japan.
Email: [email protected]
Search for more papers by this authorFunding information: JSPS Kakenhi, Grant/Award Numbers: 18H01262, 19K22901, 21H01143, 21H05421
Abstract
Infrared multiple-angle incidence resolution spectrometry (IR-MAIRS) is a recently developed spectroscopic technique that combines oblique incidence transmission measurements and chemometrics (multivariate analysis) to obtain both pure in-plane (IP) and out-of-plane (OP) vibration spectra for a thin sample. IR-MAIRS is established for analyzing the molecular orientation of organic thin films at atmospheric pressure, but it should also be powerful for the structural characterization of vapor-deposited thin samples prepared in a vacuum. The application of IR-MAIRS to vapor-deposited amorphous water is particularly interesting in the fields of physical and interstellar chemistry, because it is a representative model material for interstellar icy dust grains. We recently developed an experimental setup for in situ IR-MAIRS under low-temperature, ultrahigh-vacuum conditions, which thus facilitates measurements of interstellar ice analogs such as vapor-deposited amorphous water. This review considers the theoretical framework of IR-MAIRS and our recent experimental results for vapor-deposited amorphous water. We present spectroscopic signatures for the perpendicular orientation of dangling-OH bonds for three-coordinated water molecules at the surface of amorphous water at 90 K. The absolute absorption cross section of the three-coordinated dangling-OH bonds is quantitatively measured as 1.0 ± 0.2 × 10−18 cm2 at 3696 cm−1. As IR-MAIRS can essentially be conducted using only a Fourier-transform IR spectrometer and an angle-controllable linear polarizer, it is a useful, low-cost, and simple spectroscopic technique for studying laboratory analogs of interstellar ices including vapor-deposited amorphous water.
REFERENCES
- 1T. P. Snow, A. N. Witt, J. Astrophys, 1996, 468, L65.
- 2C. Heiles, Annu. Rev. Astron. Astrophys. 1971, 9, 293.
- 3M. Asplund, N. Grevesse, A. J. Sauval, P. Scott, Annu. Rev. Astron. Astrophys. 2009, 47, 481.
- 4S. Yamamoto, Introduction to Astrochemistry: Chemical Evolution from Interstellar Clouds to Star and Planet Formation, Springer, Tokyo 2017.
- 5T. Hama, N. Watanabe, Chem. Rev. 2013, 113, 8783.
- 6E. F. van Dishoeck, E. Herbst, D. A. Neufeld, Chem. Rev. 2013, 113, 9043.
- 7S. Tachibana, A. Kouchi, T. Hama, Y. Oba, L. Piani, I. Sugawara, Y. Endo, H. Hidaka, Y. Kimura, K. Murata, H. Yurimoto, N. Watanabe, Sci. Adv. 2017, 3, eaao2538.
- 8P. Jenniskens, D. F. Blake, A. Kouchi, in Solar System Ices, (Eds: B. Schmitt, C. Bergh, M. Festou), Kluwer Academic Publishers, Dordrecht 1998, 139.
- 9N. Watanabe, A. Kouchi, Prog. Surf. Sci. 2008, 83, 439.
- 10 M. S. Gudipati, J. Castillo-Rogez (Eds), The Science of Solar System Ices, Springer, New York 2013.
- 11A. C. A. Boogert, P. A. Gerakines, D. C. B. Whittet, Annu. Rev. Astron. Astrophys. 2015, 53, 541.
- 12A. C. A. Boogert, A. G. G. M. Tielens, C. Ceccarelli, A. M. S. Boonman, E. F. van Dishoeck, J. V. Keane, D. C. B. Whittet, T. de Graauw, Astron. Astrophys. 2000, 360, 683.
- 13W. M. Irvine, F. P. Schloerb, J. Crovisier, B. Fegley Jr., M. J. Mumma, in Protostars and Planets IV, (Eds: V. Mannings, A. P. Boss, S. S. Russell), University of Arizona Press, Tucson 2000, 1159.
- 14F. A. van Broekhuizen, K. M. Pontoppidan, H. J. Fraser, E. F. van Dishoeck, Astron. Astrophys. 2005, 441, 249.
- 15D. M. Hudgins, S. A. Sandford, L. J. Allamandola, A. G. G. M. Tielens, Astrophys. J. Suppl. Ser. 1993, 86, 713.
- 16M. Bouilloud, N. Fray, Y. Bénilan, H. Cottin, M. C. Gazeau, A. Jolly, Mon. Not. R. Astron. Soc. 2015, 451, 2145.
- 17T. Hasegawa, Quantitative Infrared Spectroscopy for Understanding of a Condensed Matter, Springer Japan, Tokyo 2017.
- 18W. Hagen, A. G. G. M. Tielens, J. M. Greenberg, Chem. Phys. 1981, 56, 367.
- 19R. M. Mastrapa, S. A. Sandford, T. L. Roush, D. P. Cruikshank, C. M. D. Ore, Astrophys. J. 2009, 1347, 701.
- 20Y. Itoh, A. Kasuya, T. Hasegawa, J. Phys. Chem. A 2009, 113, 7810.
- 21J. Umemura, T. Kamata, T. Kawai, T. Takenaka, J. Phys. Chem. 1990, 94, 62.
- 22T. Hasegawa, S. Takeda, A. Kawaguchi, J. Umemura, Langmuir 1995, 11, 1236.
- 23V. P. Tolstoy, I. V. Chernyshova, V. A. Skryshevsky, Handbook of Infrared Spectroscopy of Ultrathin Films, John Wiley & Sons, Hoboken, NewJersey 2003.
- 24 M. Tasumi (Ed), Introduction to Experimental Infrared Spectroscopy: Fundamentals and Practical Methods, John Wiley & Sons, Chichester 2014.
- 25T. Hasegawa, N. Shioya, Bull. Chem. Soc. Jpn. 2020, 93, 1127.
- 26T. Hama, S. Ishizuka, T. Yamazaki, Y. Kimura, A. Kouchi, N. Watanabe, T. Sugimoto, V. Pirronello, Phys. Chem. Chem. Phys. 2017, 19, 17677.
- 27E. Whalley, D. D. Klug, J. Chem. Phys. 1979, 71, 1513.
- 28N. Shioya, R. Fujiwara, K. Tomita, T. Shimoaka, T. Hasegawa, J. Phys. Chem. A 2020, 124, 2714.
- 29T. Hasegawa, J. Phys. Chem. B 2002, 106, 4112.
- 30T. Hasegawa, Anal. Chem. 2007, 79, 4385.
- 31N. Shioya, S. Norimoto, N. Izumi, M. Hada, T. Shimoaka, T. Hasegawa, Appl. Spectrosc. 2017, 71, 901.
- 32N. Shioya, T. Shimoaka, R. Murdey, T. Hasegawa, Appl. Spectrosc. 2017, 1242, 71.
- 33N. Shioya, K. Tomita, T. Shimoaka, T. Hasegawa, J. Phys. Chem. A 2019, 123, 7177.
- 34T. Hama, A. Ishibashi, A. Kouchi, N. Watanabe, N. Shioya, T. Shimoaka, T. Hasegawa, J. Phys. Chem. Lett. 2020, 11, 7857.
- 35T. Nagasawa, R. Sato, T. Hasegawa, N. Numadate, N. Shioya, T. Shimoaka, T. Hasegawa, T. Hama, Astrophys. J. Lett. 2021, 923, L3.
- 36V. Buch, J. P. Devlin, J. Chem. Phys. 1991, 94, 4091.
- 37J. P. Devlin, V. Buch, J. Phys. Chem. 1995, 99, 16534.
- 38J. A. Noble, C. Martin, H. J. Fraser, P. Roubin, S. Coussan, J. Phys. Chem. C 2014, 118, 20488.
- 39J. A. Noble, C. Martin, H. J. Fraser, P. Roubin, S. Coussan, J. Phys. Chem. Lett. 2014, 5, 826.
- 40L. Shi, S. M. Gruenbaum, J. L. Skinner, J. Phys. Chem. B 2012, 116, 13821.
- 41C. J. Tainter, L. Shi, J. L. Skinner, J. Chem. Phys. 2014, 140, 134503.
- 42F. Li, J. L. Skinner, J. Chem. Phys. 2010, 133, 244504.
- 43F. Li, J. L. Skinner, J. Chem. Phys. 2010, 132, 204505.
- 44H. J. Bakker, J. L. Skinner, Chem. Rev. 2010, 110, 1498.
- 45J. E. Bertie, E. Whalley, J. Chem. Phys. 1964, 40, 1637.
- 46J. E. Bertie, E. Whalley, J. Chem. Phys. 1964, 40, 1646.
- 47C. Salzmann, I. Kohl, T. Loerting, E. Mayer, A. Hallbrucker, J. Phys. Chem. B 2003, 107, 2802.
- 48C. Salzmann, I. Kohl, T. Loerting, E. Mayer, A. Hallbrucker, J. Phys. Chem. B 2002, 106, 1.
- 49J. J. Shephard, S. Klotz, C. G. Salzmann, J. Chem. Phys. 2016, 144, 204502.
- 50D. D. Klug, E. Whalley, J. Chem. Phys. 1984, 1220, 81.
- 51C. A. Tulk, D. D. Klug, R. Branderhorst, P. Sharpe, J. A. Ripmeester, J. Chem. Phys. 1998, 109, 8478.
- 52 F. Franks (Ed), Water a Comprehensive Treatise: Volume 7: Water and Aqueous Solutions at Subzero Temperatures, Plenum Press, New York 1972.
- 53D. D. Klug, O. Mishima, E. Whalley, J. Chem. Phys. 1987, 86, 5323.
- 54 F. Franks (Ed), Water Science Reviews 2, Vol. 2, Cambridge University Press, Cambridge 1986.
- 55B. Minceva-Sukarova, W. F. Sherman, G. R. Wilkinson, J. Phys. C 1984, 17, 5833.
- 56C. G. Salzmann, A. Hallbrucker, J. L. Finney, E. Mayer, Chem. Phys. Lett. 2006, 429, 469.
- 57T. F. Whale, S. J. Clark, J. L. Finney, C. G. Salzmann, J. Raman Spectrosc. 2013, 44, 290.
- 58C. Salzmann, P. G. Radaelli, A. Hallbrucker, E. Mayer, J. L. Finney, Science 2007, 1758(80), 311.
- 59F. Nakao, Vacuum 1975, 25, 431.
- 60V. F. Petrenko, R. W. Whitworth, Physics of Ice, Vol. 1999, Oxford University Press, New York 1999.
- 61M. Schulte, B. Schlosser, W. Seidel, Fresen. J. Anal. Chem. 1994, 348, 778.
- 62J. E. Bartmess, R. M. Georgiadis, Vacuum 1983, 33, 149.
- 63R. J. Levis, J. Zhicheng, N. Winograd, J. Am. Chem. Soc. 1989, 111, 4605.
- 64D. Drapcho, T. Hasegawa, Spectrosc. Suppl. 2015, 30, 31.
- 65D. C. Elton, M. Fernández-Serra, Nat. Commun. 2016, 7, 10193.
- 66E. Whalley, Can. J. Chem. 1977, 55, 3429.
- 67B. M. Auer, J. L. Skinner, J. Chem. Phys. 2008, 128, 224511.
- 68A. Kouchi, J. M. Greenberg, T. Yamamoto, T. Mukai, Astrophys. J. 1992, 388, L73.
- 69A. Kouchi, J. M. Greenberg, T. Yamamoto, T. Mukai, Z. F. Xing, in Physics and Chemistry of Ice, (Eds: N. Maneo, T. Hondoh), Hokkaido University Press, Sapporo 1992, 229.
- 70A. Kouchi, J. M. Greenberg, T. Yamamoto, T. Mukai, Z. F. Xing, in Asteroids, Comets, Meteors 1991, (Eds: A. W. Harris, E. Bowell), Lunar and Planet. Inst., Houston 1992, 325.
- 71K. P. Stevenson, G. A. Kimmel, Z. Dohnálek, R. S. Smith, B. D. Kay, Science 1999, 283(80), 1505.
- 72G. A. Kimmel, Z. Dohnálek, K. P. Stevenson, R. S. Smith, B. D. Kay, J. Chem. Phys. 2001, 114, 5295.
- 73G. A. Kimmel, K. P. Stevenson, Z. Dohnálek, R. S. Smith, B. D. Kay, J. Chem. Phys. 2001, 114, 5284.
- 74Z. Dohnálek, G. A. Kimmel, P. Ayotte, R. S. Smith, B. D. Kay, J. Chem. Phys. 2003, 118, 364.
- 75J. He, A. R. Clements, S. M. Emtiaz, F. Toriello, R. T. Garrod, G. Vidali, Astrophys. J. 2019, 878, 94.
- 76S. K. Talewar, S. O. Halukeerthi, R. Riedlaicher, J. J. Shephard, A. E. Clout, A. Rosu-Finsen, G. R. Williams, A. Langhoff, D. Johannsmann, C. G. Salzmann, J. Chem. Phys. 2019, 151, 134505.
- 77A. Kouchi, T. Hama, Y. Kimura, H. Hidaka, R. Escribano, N. Watanabe, Chem. Phys. Lett. 2016, 658, 287.
- 78J. H. E. Cartwright, B. Escribano, C. I. Sainz-Díaz, Thin Solid Films 2010, 518, 3422.
- 79E. Lisitsin-Baranovsky, S. Delage, O. Sucre, O. Ofer, P. Ayotte, G. Alexandrowicz, J. Phys. Chem. C 2016, 120, 25445.
- 80C. Bu, C. A. Dukes, R. A. Baragiola, Appl. Phys. Lett. 2016, 109, 201902.
- 81A. Kouchi, M. Tsuge, T. Hama, Y. Oba, S. Okuzumi, S. Sirono, M. Momose, N. Nakatani, K. Furuya, T. Shimonishi, T. Yamazaki, H. Hidaka, Y. Kimura, K. Murata, K. Fujita, S. Nakatsubo, S. Tachibana, N. Watanabe, Astrophys. J. 2021, 918, 45.
- 82R. T. Garrod, Astrophys. J. 2013, 778, 158.
- 83A. R. Clements, B. Berk, I. R. Cooke, R. T. Garrod, Phys. Chem. Chem. Phys. 2018, 20, 5553.
- 84D. A. Christianson, R. T. Garrod, Front. Astron. Sp. Sci. 2021, 8, 1.
- 85V. Kofman, J. He, I. L. ten Kate, H. Linnartz, Astrophys. J. 2019, 875, 131.
- 86C. Bu, J. Shi, U. Raut, E. H. Mitchell, R. A. Baragiola, J. Chem. Phys. 2015, 142, 134702.
- 87J. A. Noble, E. Michoulier, C. Aupetit, J. Mascetti, Astron. Astrophys. 2020, 644, A22.
- 88Y. Nagata, T. Hama, E. H. G. Backus, M. Mezger, D. Bonn, M. Bonn, G. Sazaki, Acc. Chem. Res. 2019, 52, 1006.
- 89S. Bahr, C. Toubin, V. Kempter, J. Chem. Phys. 2008, 128, 134712.
- 90R. Luna, G. Molpeceres, J. Ortigoso, M. A. Satorre, M. Domingo, B. Maté, Astron. Astrophys. 2018, 617, A116.
- 91B. Maté, M. Satorre, R. Escribano, Phys. Chem. Chem. Phys. 2021, 23, 9532.
- 92J. W. Schaaf, D. Williams, J. Opt. Soc. Am. 1973, 63, 726.
- 93J. J. Max, C. Chapados, J. Chem. Phys. 2009, 131, 184505.
- 94P. Ehrenfreund, P. A. Gerakines, W. A. Schutte, M. C. van Hemert, F. van Dishoeck, EwineAstron. Astrophys. 1996, 312, 263.
- 95K. Ohno, M. Okimura, N. Akai, Y. Katsumoto, Phys. Chem. Chem. Phys. 2005, 7, 3005.
- 96P. Gorai, M. Sil, A. Das, B. Sivaraman, S. K. Chakrabarti, S. Ioppolo, C. Puzzarini, Z. Kanuchova, A. Dawes, M. Mendolicchio, G. Mancini, V. Barone, N. Nakatani, T. Shimonishi, N. Mason, ACS Earth Sp. Chem. 2020, 4, 920.
- 97W. Hujo, M. Gaus, M. Schultze, T. Kubař, J. Grunenberg, M. Elstner, S. Bauerecker, J. Phys. Chem. A 2011, 115, 6218.
- 98A. Hodgson, S. Haq, Surf. Sci. Rep. 2009, 64, 381.
- 99J. K. Gregory, D. C. Clary, K. Liu, M. G. Brown, R. J. Saykally, Science 1997, 275(80), 814.
- 100M. Arakawa, H. Kagi, H. Fukazawa, Astrophys. J. Suppl. Ser. 2009, 184, 361.
- 101A. Kouchi, Y. Kimura, K. Kitajima, H. Katsuno, H. Hidaka, Y. Oba, M. Tsuge, T. Yamazaki, K. Fujita, T. Hama, Y. Takahashi, S. Nakatsubo, N. Watanabe, Front. Chem. 2021, 9, 799851.