Bench tests for microscopic theory of Raman scattering in powders of disordered nonpolar crystals: Nanodiamonds and beyond
Andrey G. Yashenkin
Theoretical Physics Division, Petersburg Nuclear Physics Institute NRC “Kurchatov Institute”, Gatchina, Russia
Department of Physics, St. Petersburg State University, St. Petersburg, Russia
Search for more papers by this authorCorresponding Author
Oleg I. Utesov
Theoretical Physics Division, Petersburg Nuclear Physics Institute NRC “Kurchatov Institute”, Gatchina, Russia
Department of Physics, St. Petersburg State University, St. Petersburg, Russia
St. Petersburg School of Physics, Mathematics, and Computer Science, HSE University, St. Petersburg, Russia
Correspondence
Sergei V. Koniakhin and Oleg I. Utesov, Theoretical Physics Division, Petersburg Nuclear Physics Institute NRC “Kurchatov Institute”, Gatchina 188300, Russia.
Email: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Sergei V. Koniakhin
Institute Pascal, PHOTON-N2, University Clermont Auvergne, CNRS, Aubière Cedex, France
Nanobiotechnology Laboratory, Alferov University, St. Petersburg, Russia
Correspondence
Sergei V. Koniakhin and Oleg I. Utesov, Theoretical Physics Division, Petersburg Nuclear Physics Institute NRC “Kurchatov Institute”, Gatchina 188300, Russia.
Email: [email protected]; [email protected]
Search for more papers by this authorAndrey G. Yashenkin
Theoretical Physics Division, Petersburg Nuclear Physics Institute NRC “Kurchatov Institute”, Gatchina, Russia
Department of Physics, St. Petersburg State University, St. Petersburg, Russia
Search for more papers by this authorCorresponding Author
Oleg I. Utesov
Theoretical Physics Division, Petersburg Nuclear Physics Institute NRC “Kurchatov Institute”, Gatchina, Russia
Department of Physics, St. Petersburg State University, St. Petersburg, Russia
St. Petersburg School of Physics, Mathematics, and Computer Science, HSE University, St. Petersburg, Russia
Correspondence
Sergei V. Koniakhin and Oleg I. Utesov, Theoretical Physics Division, Petersburg Nuclear Physics Institute NRC “Kurchatov Institute”, Gatchina 188300, Russia.
Email: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Sergei V. Koniakhin
Institute Pascal, PHOTON-N2, University Clermont Auvergne, CNRS, Aubière Cedex, France
Nanobiotechnology Laboratory, Alferov University, St. Petersburg, Russia
Correspondence
Sergei V. Koniakhin and Oleg I. Utesov, Theoretical Physics Division, Petersburg Nuclear Physics Institute NRC “Kurchatov Institute”, Gatchina 188300, Russia.
Email: [email protected]; [email protected]
Search for more papers by this authorFunding information: Russian Science Foundation, Grant/Award Number: 19-72-00031
Abstract
Recent Raman data on nanocrystallite arrays are revised within the microscopic theory for Raman peaks positions and broadening (linewidth). The theory combines the elasticity theory-like approach for optical phonons used in order to evaluate the Raman peaks structure and the Green's function method applied for the phonon lines broadening. These theories are supported by the atomistic calculations within the dynamical matrix method for optical phonons and by the bond polarization model used to calculate the Raman intensities. The experimental data on four various nanopowders are analyzed with the use of this theory. The large width of the Raman peak in nanoparticles as compared with the corresponding peak in bulk materials and the width inverse dependence on the particle size previously observed by other researchers are explained within the framework of the theory. It is shown that the theory is capable to extract confidently from the Raman data four important microscopic characteristics of the nanopowder including the mean particle size, the variance of the particle size distribution function, the strength of intrinsic disorder in the particle, and the effective faceting number that parameterizes the particle shape.
CONFLICT OF INTEREST
The authors declare that they have no conflicts of interest.
Open Research
DATA AVAILABILITY STATEMENT
The data supporting our findings are available from the corresponding authors upon reasonable request.
REFERENCES
- 1J. Roh, Y.-S. Park, J. Lim, V. I. Klimov, Nat. Commun. 2020, 11, 1.
- 2P. Geiregat, D. Van Thourhout, Z. Hens, NPG Asia Mater. 2019, 11, 41. https://doi.org/10.1038/s41427-019-0141-y
- 3M. Veldhorst, J. C. C. Hwang, C. H. Yang, A. W. Leenstra, B. de Ronde, J. P. Dehollain, J. T. Muhonen, F. E. Hudson, K. M. Itoh, A. Morello, Nat. Nanotechnol. 2014, 9, 981.
- 4S. Kidalov, F. Shakhov, Materials 2009, 2(4), 2467. https://doi.org/10.3390/ma2042467.V
- 5Y. Xia, H. Yang, C. T. Campbell, Acc. Chem. Res. 2013, 46(8), 1671. https://pubs.acs.org/doi/full/10.1021/ar400148q
- 6K. D. Behler, A. Stravato, V. Mochalin, G. Korneva, G. Yushin, Y. Gogotsi, ACS Nano 2009, 3, 363.
- 7V. Pichot, M. Guerchoux, O. Muller, M. Guillevic, P. Fioux, L. Merlat, D. Spitzer, Diamond Relat. Mater. 2019, 95, 55. https://doi.org/10.1016/j.diamond.2019.04.001
- 8R. Pecora, J. Nanopart. Res. 2000, 2, 123.
- 9B. Chu, Laser Light Scattering: Basic Principles and Practice, Courier Corporation 2007.
- 10S. Mourdikoudis, R. M. Pallares, N. T. K. Thanh, Nanoscale 2018, 10, 12871.
- 11S. V. Koniakhin, I. E. Eliseev, I. N. Terterov, A. V. Shvidchenko, E. D. Eidelman, M. V. Dubina, Microfluid Nanofluid 2015, 18, 1189.
- 12S. V. Koniakhin, N. A. Besedina, D. A. Kirilenko, A. V. Shvidchenko, E. D. Eidelman, Superlattices Microstruct. 2018, 113, 204. https://doi.org/10.1016/j.spmi.2017.10.039
- 13P. A. Hassan, S. Rana, G. Verma, Langmuir 2015, 31(1), 3. https://doi.org/10.1021/la501789z
- 14D. Segets, KONA Powder Particle J. 2016, 33, 48. https://doi.org/10.14356/kona.2016012
- 15M. Cardona, R. Merlin, Light Scattering in Solid IX, Springer 2006 1.
10.1007/978-3-540-34436-0_1 Google Scholar
- 16C. S. S. R. Kumar, Raman Spectroscopy for Nanomaterials Characterization, Springer Science & Business Media 2012.
10.1007/978-3-642-20620-7 Google Scholar
- 17A. C. Ferrari, J. Robertson, Ser. A Math. Phys. Eng. Sci. 2004, 362, 2477.
- 18A. P. Meilakhs, S. V. Koniakhin, Superlattices Microstruct. 2017, 110, 319. https://doi.org/10.1016/j.spmi.2017.08.010
- 19S. V. Koniakhin, O. I. Utesov, I. N. Terterov, A. V. Siklitskaya, A. G. Yashenkin, D. Solnyshkov, J. Phys. Chem. C 2018, 122, 19219.
- 20O. I. Utesov, A. G. Yashenkin, S. V. Koniakhin, J. Phys. Chem. C 2018, 122, 22738.
- 21H. Richter, Z. P. Wang, L. Ley, Solid State Commun. 1981, 39(5), 625. https://doi.org/10.1016/0038-1098(81)90337-9
- 22I. H. Campbell, P. M. Fauchet, Solid State Commun. 1986, 58(10), 739. https://doi.org/10.1016/0038-1098(86)90513-2
- 23K. W. Adu, H. R. Gutierrez, U. J. Kim, G. U. Sumanasekera, P. C. Eklund, Nano Lett. 2005, 5, 409.
- 24G. Faraci, S. Gibilisco, P. Russo, A. R. Pennisi, S. La Rosa, Phys. Rev. B 2006, 73, 033307. https://doi.org/10.1103/physrevb.73.033307
- 25O. Sebastian, V. N. Mochalin, M. Havel, G. Yushin, Y. Gogotsi, Phys. Rev. B 2009, 80, 075419. https://doi.org/10.1103/physrevb.80.075419
- 26V. I. Korepanov, H.-o. Hamaguchi, J. Raman Spectrosc. 2017, 48(6), 842. https://doi.org/10.1002/jrs.5132
- 27V. I. Korepanov, H. O. Hamaguchi, E. Osawa, V. Ermolenkov, I. K. Lednev, B. J. M. Etzold, O. Levinson, B. Zousman, C. P. Epperla, H.-C. Chang, Carbon 2017, 121, 322. https://doi.org/10.1016/j.carbon.2017.06.012
- 28J. Zi, K. Zhang, X. Xie, Phys. Rev. B 1997, 55, 9263. https://doi.org/10.1103/physrevb.55.9263
- 29W. Ke, X. Feng, Y. Huang, J. Appl. Phys. 2011, 109(8), 083526. https://doi.org/10.1063/1.3569888
10.1063/1.3569888 Google Scholar
- 30Y. Gao, P. Yin, Diamond Relat. Mater. 2019, 99, 107524. https://doi.org/10.1016/j.diamond.2019.107524
- 31M. Yoshikawa, Y. Mori, M. Maegawa, G. Katagiri, H. Ishida, A. Ishitani, Appl. Phys. Lett. 1993, 62(24), 3114. https://doi.org/10.1063/1.109154
- 32M. Yoshikawa, Y. Mori, H. Obata, M. Maegawa, G. Katagiri, H. Ishida, A. Ishitani, Appl. Phys. Lett. 1995, 67(5), 694. https://doi.org/10.1063/1.115206
- 33M. Chaigneau, G. Picardi, H. A. Girard, J.-C. Arnault, R. Ossikovski, J. Nanopart. Res. 2012, 14, 955.
- 34O. I. Utesov, A. G. Yashenkin, S. V. Koniakhin, Phys. Rev. B 2020, 102, 205421.
- 35S. V. Koniakhin, O. I. Utesov, A. G. Yashenkin, Phys. Rev. B 2020, 102, 205422.
- 36O. I. Utesov, S. V. Koniakhin, A. G. Yashenkin, O. I. Utesov, S. V. Koniakhin, A. G. Yashenkin, J. Phys. Chem. C 2021, 125(33), 18444. https://doi.org/10.1021/acs.jpcc.1c04007
- 37C. Rani, M. Tanwar, S. Kandpal, T. Ghosh, D. K. Pathak, A. Chaudhary, R. Kumar, J. Raman Spectrosc. 2021. https://doi.org/10.1002/jrs.6117
10.1002/jrs.6117 Google Scholar
- 38M. Born, K. Huang, Dynamical theory of crystal lattices, Clarendon press 1954.
- 39P. N. Keating, Phys. Rev. 1966, 145, 637.
- 40J. Martín, S. Montero, J. Chem. Phys. 1984, 80(10), 4610. https://doi.org/10.1063/1.446545
- 41D. W. Snoke, M. Cardona, Solid State Commun. 1993, 87(2), 121. https://doi.org/10.1016/0038-1098(93)90339-o
- 42O. A. Shenderova, I. I. Vlasov, S. Turner, G. Van Tendeloo, S. B. Orlinskii, A. A. Shiryaev, A. A. Khomich, S. N. Sulyanov, F. Jelezko, J. Wrachtrup, J. Phys. Chem. C 2011, 115(29), 14014. https://doi.org/10.1021/jp202057q
- 43Y. Gao, P. Yin, Sci. Rep. 2017, 7, 1.
- 44M. Dimitrievska, A. Fairbrother, A. Pérez-Rodríguez, E. Saucedo, V. Izquierdo-Roca, Acta Mater. 2014, 70, 272. https://doi.org/10.1016/j.actamat.2014.02.035
- 45V. Dzhagan, O. Selyshchev, O. Raievska, O. Stroyuk, L. Hertling, N. Mazur, M. Y. Valakh, D. R. T. Zahn, J. Phys. Chem. C 2020, 124(28), 15511. https://doi.org/10.1021/acs.jpcc.0c03268
- 46A. Khare, B. Himmetoglu, M. Cococcioni, E. S. Aydil, J. Appl. Phys. 2012, 111, 123704. https://doi.org/10.1063/1.4728232
- 47B. L. Altshuler, Y. Gefen, A. Kamenev, L. S. Levitov, Phys. Rev. Lett. 1997, 78, 2803.
- 48I. V. Gornyi, A. D. Mirlin, D. G. Polyakov, A. L. Burin, Ann. Phys. 2017, 529, 1600360. https://doi.org/10.1002/andp.201600360