Disulfide linkage Raman markers: a reconsideration attempt
Belén Hernández
Sorbonne Paris Cité, Université Paris 13, Groupe de Biophysique Moléculaire, UFR Santé-Médecine-Biologie Humaine, 93017 Paris, France
Search for more papers by this authorFernando Pflüger
Sorbonne Paris Cité, Université Paris 13, Groupe de Biophysique Moléculaire, UFR Santé-Médecine-Biologie Humaine, 93017 Paris, France
Search for more papers by this authorEduardo López-Tobar
Instituto de Estructura de la Materia, IEM-CSIC, Serrano 121, 28006 Madrid, Spain
Search for more papers by this authorSergei G. Kruglik
Sorbonne Universités, UPMC Univ Paris 06, UMR 8237, Laboratoire Jean Perrin, F-75005 Paris, France
CNRS, UMR 8237, Laboratoire Jean Perrin, F-75005 Paris, France
Search for more papers by this authorJosé V. Garcia-Ramos
Instituto de Estructura de la Materia, IEM-CSIC, Serrano 121, 28006 Madrid, Spain
Search for more papers by this authorSantiago Sanchez-Cortes
Instituto de Estructura de la Materia, IEM-CSIC, Serrano 121, 28006 Madrid, Spain
Search for more papers by this authorCorresponding Author
Mahmoud Ghomi
Sorbonne Paris Cité, Université Paris 13, Groupe de Biophysique Moléculaire, UFR Santé-Médecine-Biologie Humaine, 93017 Paris, France
Correspondence to: Mahmoud Ghomi, Sorbonne Paris Cité, Université Paris 13, Groupe de Biophysique Moléculaire, UFR Santé-Médecine-Biologie Humaine, 74 rue Marcel Cachin, 93017 Bobigny cedex, Paris, France.
E-mail: [email protected]
Search for more papers by this authorBelén Hernández
Sorbonne Paris Cité, Université Paris 13, Groupe de Biophysique Moléculaire, UFR Santé-Médecine-Biologie Humaine, 93017 Paris, France
Search for more papers by this authorFernando Pflüger
Sorbonne Paris Cité, Université Paris 13, Groupe de Biophysique Moléculaire, UFR Santé-Médecine-Biologie Humaine, 93017 Paris, France
Search for more papers by this authorEduardo López-Tobar
Instituto de Estructura de la Materia, IEM-CSIC, Serrano 121, 28006 Madrid, Spain
Search for more papers by this authorSergei G. Kruglik
Sorbonne Universités, UPMC Univ Paris 06, UMR 8237, Laboratoire Jean Perrin, F-75005 Paris, France
CNRS, UMR 8237, Laboratoire Jean Perrin, F-75005 Paris, France
Search for more papers by this authorJosé V. Garcia-Ramos
Instituto de Estructura de la Materia, IEM-CSIC, Serrano 121, 28006 Madrid, Spain
Search for more papers by this authorSantiago Sanchez-Cortes
Instituto de Estructura de la Materia, IEM-CSIC, Serrano 121, 28006 Madrid, Spain
Search for more papers by this authorCorresponding Author
Mahmoud Ghomi
Sorbonne Paris Cité, Université Paris 13, Groupe de Biophysique Moléculaire, UFR Santé-Médecine-Biologie Humaine, 93017 Paris, France
Correspondence to: Mahmoud Ghomi, Sorbonne Paris Cité, Université Paris 13, Groupe de Biophysique Moléculaire, UFR Santé-Médecine-Biologie Humaine, 74 rue Marcel Cachin, 93017 Bobigny cedex, Paris, France.
E-mail: [email protected]
Search for more papers by this authorAbstract
During the last decades, Raman spectroscopy has been routinely used for probing the conformational features of disulfide linkages in peptides and proteins. However, the interpretation of disulfide Raman markers is currently performed by a simple rule derived from the earliest observations on dialkyl disulfides. More precisely, this rule consists of the following: (1) in analyzing the Raman bands in the 550–500 cm−1 region ascribed to disulfide bond stretch motion, namely, ν(S-S), and (2) assigning the three types of Raman markers observed at ~500, ~520, and ~540 cm−1 to three families of rotamers defined along the three successive bonds of the -C-S-S-C- moiety, referred to as ggg, ggt, and tgt. In this report, we attempt to show that an accurate analysis of disulfide vibrational features needs the use of the five torsion angles (χ1, χ2, χ3, χ2', and χ1') along the five successive bonds joining the two α-carbon atoms in the cystine (Cys-Cys) unit. The present work is inspired by the disulfide conformational investigations performed by a statistical scan of numerous protein crystal and nuclear magnetic resonance data, taking into account the handedness (right and left) of a disulfide bridge, its spatial shape (Staple, Hook, and Spiral), as well as the signs of the two extreme torsion angles χ1 and χ1'. It appears that the combined use of the old and recent conformational notations allows a more accurate structural and vibrational analysis of disulfide linkage. Copyright © 2014 John Wiley & Sons, Ltd.
Supporting Information
Filename | Description |
---|---|
jrs4521-sup-0001-supinfo.pdfPDF document, 214.7 KB | Supporting info item |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 W. L. Peticolas, E. Evretz, Methods Enzymol. 1992, 211, 335–351.
- 2 E. Taillandier, J. Liquier, Methods Enzymol. 1992, 211, 307–335.
- 3 W. L. Peticolas, Methods Enzymol. 1995, 246, 389-416.
- 4 G. J. Thomas, Jr., M. Tsuboi, Advances in Biophysical Chemistry. Raman Spectroscopy of Nucleic Acids and Their Complexes, (Ed.: A. Bush), JAI Press, Greenwich, CT, 1993.
- 5
J. M. Benevides,
S. A. Overman,
G. J. Thomas, Jr. Raman spectroscopy of proteins, in Current Protocols in Protein Science (Eds. J. E. Coligan, B. M. Dunn, H. L. Ploegh, D. W. Speicher, P. T. Wingfield), John Wiley & Sons Inc, New York, 2003, 17.8.1–17.8.35.
10.1002/0471140864.ps1708s33 Google Scholar
- 6 H. Takeuchi, Anal. Sci. 2011, 27, 1077–1086.
- 7 S. A. Oladepo, K. Xiong, Z. Hong, S. A. Asher, J. Handen, I. K. Lednev, Chem. Rev. 2012, 112, 2604–2628.
- 8 W. Saenger, Principles of Nucleic Acids Structure (Ed. C. R. Cantor), Springer-Verlag, New York, 1983.
- 9 G. E. Schulz, R. H. Schrimer, Principles of Protein Structure (Ed. C. R. Cantor), Springer-Verlag, New York, 1990.
- 10 S. F. Betz, Protein Sci. 1993, 2, 1551–1558.
- 11 J. C. A. Bardwell, Nat. Struct. Mol. Biol. 2004, 11, 382–383.
- 12 B. Heras, M. Kurz, S. R. Shouldice, J. L. Martin, Curr. Opin. Struct. Biol. 2007, 17, 691–698.
- 13 K. Inaba, Genes Cells 2010, 15, 935–943.
- 14 I. Azimi, L. J. Matthias, R. J. Center, J. W. H. Wong, P. J. Hogg, J. Biol. Chem. 2010, 285, 40072–40080.
- 15 M. Narayan, FEBS J. 2012, 279, 2272–2282.
- 16 M. Depuydt, J. Messens, J. F. Collet, Antioxid. Redox Signal. 2011, 15, 49–66
- 17 B. Schmidt, L. Ho, P. J. Hogg, Biochemistry 2006, 45, 7429–7433.
- 18 B. Schmidt, P. J. Hogg, BMC Struct. Biol. 2007, 7, 49.
- 19 K. M. Cook, P. J. Hogg, Antioxid. Redox Signal. 2013, 18, 1987–2015.
- 20 P. J. Hogg, Nat. Rev. Cancer 2013, 13, 425–431.
- 21 D. W. Scott, H. L. Finke, M. E. Gross, G. B. Guthrie, H. M. Huffman, J. Am. Chem. Soc. 1950; 72, 2424–2430.
- 22 D. W. Scott, H. L. Finke, J. P. McCullough, M. E. Gross, R. E. Pennington, G. Waddington, J. Am. Chem. Soc. 1952, 74, 2478–2483.
- 23 F. G. Frankiss, J. Mol. Struct. 1969, 3, 89–101.
- 24 H. Sugeta, A. Go, T. Miyazawa, Chem. Lett. 1972; 83–86.
- 25 H. Sugeta, A. Go, T. Miyazawa, Bull. Chem. Soc. Jpn. 1973, 46, 3407–3411.
- 26 H. E. Van Wart, F. Cardinaux, H. A. Scheraga J. Phys. Chem. 1976, 80, 625–630.
- 27 H. E. Van Wart, H. A. Scheraga, J. Phys. Chem. 1976, 80, 1812–1823.
- 28 H. E. Van Wart, H. A. Scheraga, J. Phys. Chem. 1976, 80, 1823–1832.
- 29 H. E. Van Wart, H. A. Scheraga, Proc. Natl. Acad. Sci. U. S. A. 1977, 74, 13-17.
- 30 H. E. Van Wart, H. A. Scheraga, Proc. Natl. Acad. Sci. U. S. A. 1977, 83, 3064–3067.
- 31 S. W. Han, J. E. Rivier, H. A. Scheraga, Int. J. Pept. Prot. Res. 1980, 15, 355–364.
- 32 B. Hernández, C. Carelli, Y. M. Coïc, J. De Coninck, M. Ghomi, J. Phys. Chem. B 2009, 113, 12796–12803.
- 33 B. Hernández, Y. M. Coïc, S. G. Kruglik, C. Carelli, R. Cohen, M. Ghomi, J. Phys. Chem. B 2012, 116, 9337–9345.
- 34 M. Pazderková, L. Bednárová, H. Dlouhá, M. Flegel, M. Lebl, J. Hlaváček, V. Setnička, M. Urbanová, S. Hynie, V. Klenerová, V. Baumruk, P. Maloň, Biopolymers 2012, 97, 923–932.
- 35 E. Podstawka-Proniewicz, D. Sobolewski, A. Prahl, Y. Kim, L. M. Proniewicz, J. Raman Spectrosc. 2012, 43, 51–60.
- 36 T. Kitagawa, T. Azuma, K. Hamagushi, Biopolymers 1973, 18, 451–465.
- 37 C. Liang, A. Morris, S. Schlücker, K. Imoto, V. H. Price, E. Menefee, S. M. Wincovitch, I. W. Levin, D. Tamura, K. R. Strehle, K. H. Kraemer, J. J. DiGiovanna, J. Invest. Derm. 2006, 126, 2210-2216.
- 38 S. Schlücker, C. Liang, K. R. Strehle, J. J. DiGiovanna, K. H. Kraemer, I. W. Levi, Biopolymers 2006, 82, 615–622.
- 39 W. Zhao, S. Krimm, J. Mol. Struct. 1990, 224, 7–20.
- 40 K. R. Ackermann, J. Koster, S. Schlücker, Chem. Phys. 2009, 355, 81–84.
- 41 B. Hernández, Y. M. Coïc, B. Baron, S. G. Kruglik, F. Pflüger, R. Cohen, C. Carelli, M. Ghomi, Biopolymers 2014. DOI: 10.1002/bip.22491.
- 42 W. Kohn, L. J. Sham, Phys. Rev. 1965, 140, A1133–A1138.
- 43 V. Barone, M. Cossi, J. Phys. Chem. A 1988, 102, 1995–2001.
- 44 M. Cossi, N. Rega, G. Scalmani, V. Barone, J. Comp. Chem. 2003, 24, 669–681.
- 45 B. Hernández, F. Pflüger, S. G. Kruglik, M. Ghomi, Chem. Phys. 2013, 425, 104–113.
- 46 B. Hernández, F. Pflüger, S. G. Kruglik, M. Ghomi, J. Raman Spectrosc. 2013, 44, 827–833.
- 47 A. D. Becke, J. Chem. Phys. 1993, 98, 5648–5652.
- 48 C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785–789.
- 49 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision C.01, Gaussian, Inc., Wallingford, CT 2010.
- 50 B. M. Oughton, P. M. Harrison, Acta Cryst. 1957, 10, 479–480.
- 51 L. K. Steinrauf, J. Peterson, L. H. Jensen, J. Am. Chem. Soc. 1958; 80, 3835–3838.
- 52 B. Oughton, P. Harrison, Acta Cryst. 1959, 12, 396–404.
- 53 S. A. Moggach, D. R. Allan, S. Parsons, L. Sawyer, J. Warren, J. Synchrotron Rad. 2005, 12, 598–607.