Efferent controls in crustacean mechanoreceptors
Corresponding Author
Daniel Cattaert
Laboratoire de Neurobiologie des Réseaux, LNR, UMR 5816, CNRS, Université de Bordeaux 1, Biologie Animale, 33405 Talence, France
Laboratoire de Neurobiologie des Réseaux, LNR, UMR 5816, CNRS, Université de Bordeaux 1, Biologie Animale, Bat B2, Avenue des Facultés, 33405 Talence, FranceSearch for more papers by this authorMorgane Le Bon
Laboratoire de Neurobiologie des Réseaux, LNR, UMR 5816, CNRS, Université de Bordeaux 1, Biologie Animale, 33405 Talence, France
Search for more papers by this authorDidier Le Ray
Laboratoire de Neurobiologie des Réseaux, LNR, UMR 5816, CNRS, Université de Bordeaux 1, Biologie Animale, 33405 Talence, France
Search for more papers by this authorCorresponding Author
Daniel Cattaert
Laboratoire de Neurobiologie des Réseaux, LNR, UMR 5816, CNRS, Université de Bordeaux 1, Biologie Animale, 33405 Talence, France
Laboratoire de Neurobiologie des Réseaux, LNR, UMR 5816, CNRS, Université de Bordeaux 1, Biologie Animale, Bat B2, Avenue des Facultés, 33405 Talence, FranceSearch for more papers by this authorMorgane Le Bon
Laboratoire de Neurobiologie des Réseaux, LNR, UMR 5816, CNRS, Université de Bordeaux 1, Biologie Animale, 33405 Talence, France
Search for more papers by this authorDidier Le Ray
Laboratoire de Neurobiologie des Réseaux, LNR, UMR 5816, CNRS, Université de Bordeaux 1, Biologie Animale, 33405 Talence, France
Search for more papers by this authorAbstract
Since the 1960s it has been known that central neural networks can elaborate motor patterns in the absence of any sensory feedback. However, sensory and neuromodulatory inputs allow the animal to adapt the motor command to the actual mechanical configuration or changing needs. Many studies in invertebrates, particularly in crustacea, have described several mechanisms of sensory-motor integration and have shown that part of this integration was supported by the efferent control of the mechanosensory neurons themselves. In this article, we review the findings that support such an efferent control of mechanosensory neurons in crustacea. Various types of crustacean proprioceptors feeding information about joint movements and strains to central neural networks are considered, together with evidence of efferent controls exerted on their sensory neurons. These efferent controls comprise (1) the neurohormonal modulation of the coding properties of sensory neurons by bioamines and peptides; (2) the presynaptic inhibition of sensory neurons by GABA, glutamate and histamine; and (3) the long-term potentiation of sensory-motor synapses by glutamate. Several of these mechanisms can coexist on the same sensory neuron, and the functional significance of such multiple modulations is discussed. Microsc. Res. Tech. 58:312–324, 2002. © 2002 Wiley-Liss, Inc.
REFERENCES
- Bässler U. 1986. Afferent control of walking in the stick insect Cuniculina impigra. II. Reflex reversal and the release of the swing phase in the restrained foreleg. J Comp Physiol [A] 158: 351–361.
- Bévengut M, Clarac F, Cattaert D. 1997. Antidromic modulation of a proprioceptor sensory discharge in crayfish. J Neurophysiol 78: 1180–1183.
- Brown TG. 1911. The intrinsic factors in the act of progression in the mammal. Proc R Soc Lond B Biol Sci 84: 308–319.
- Burrows M, Laurent G. 1993. Synaptic potentials in the central terminals of locust proprioceptive afferents generated by other afferents from the same sense organ. J Neurosci 13: 808–819.
- Burrows M, Matheson T. 1994. A presynaptic gain control mechanism among sensory neurons of a locust leg proprioceptor. J Neurosci 14: 272–282.
- Cattaert D, El Manira A. 1999. Shunting versus inactivation: analysis of presynaptic inhibitory mechanisms in primary afferents of the crayfish. J Neurosci 19: 6079–6089.
- Cattaert D, Le Ray D. 1998. Direct glutamate-mediated presynaptic inhibition of sensory afferents by the postsynaptic motor neurons. Eur J Neurosci 10: 3737–3746.
- Cattaert D, Le Ray D. 2001. Adaptive motor control in crayfish. Prog Neurobiol 63: 199–240.
- Cattaert D, El Manira A, Clarac F. 1992. Direct evidence for presynaptic inhibitory mechanisms in crayfish sensory afferents. J Neurophysiol 67: 610–624.
- Cattaert D, El Manira A, Bevengut M. 1999. Presynaptic inhibition and antidromic discharges in crayfish primary afferents. J Physiol Paris 93: 349–358.
- Cattaert D, Libersat F, El Manira A. 2001. Presynaptic inhibition and antidromic spikes in primary afferents of the crayfish: a computational and experimental analysis. J Neurosci 21: 1007–1021.
- Claiborne BJ, Selverston AI. 1984. Histamine as a neurotransmitter in the stomatogastric nervous system of the spiny lobster. J Neurosci 4: 708–721.
- Clarac F, Cattaert D, Le Ray D. 2000. Central control components of a ‘simple’ stretch reflex. Trends Neurosci 23: 199–208.
- DiCaprio RA. 1999. Gating of afferent input by a central pattern generator. J Neurophysiol 81: 950–953.
- DiCaprio RA, Clarac F. 1981. Reversal of a walking leg reflex elicited by a muscle receptor. J Exp Biol 90: 197–203.
- Dubuc R, Cabelguen J-M, Rossignol S. 1985. Rhythmic antidromic discharges of single primary afferents recorded in cut dorsal root filaments during locomotion in the cat. Brain Res 359: 375–378.
- Dubuc R, Cabelguen J-M, Rossignol S. 1988. Rhythmic fluctuations of dorsal root potentials and antidromic discharges of primary afferents during fictive locomotion in the cat. J Neurophysiol 60: 2014–2036.
- Duysens J, Trippel M, Horstmann GA, Dietz V. 1990. Gating and reversal of reflexes in ankle muscles during human walking. Exp Brain Res 82: 351–358.
- Eckert RO. 1961. Reflex relationships of the abdominal stretch receptors of the crayfish. I. Feedback inhibition of the receptors. J Cell Comp Physiol 57: 149–162.
- El Manira A, Clarac F. 1991. GABA-mediated presynaptic inhibition in crayfish primary afferents by non-A, non-B GABA receptors. Eur J Neurosci 3: 1208–1218.
- El Manira A, Clarac F. 1994. Presynaptic inhibition is mediated by histamine and GABA in the crustacean escape reaction. J Neurophysiol 71: 1088–1095.
- El Manira A, Cattaert D, Clarac F. 1990. Reflex reversal and presynaptic control of sensory afferents in crustacea. Eur J Neurosci S3: 183–183.
-
El Manira A,
Cattaert D,
Clarac F.
1991a.
Monosynaptic connections mediate resistance reflex in crayfish (Procambarus clarkii) walking legs.
J Comp Physiol [A]
168:
337–349.
10.1007/BF00198353 Google Scholar
- El Manira A, DiCaprio RA, Cattaert D, Clarac F. 1991b. Monosynaptic interjoint reflexes and their central modulation during fictive locomotion in crayfish. Eur J Neurosci 3: 1219–1231.
- El Manira A, Rossi-Durand C, Clarac F. 1991c. Serotonin and proctolin modulate the response of a stretch receptor in crayfish. Brain Res 541: 157–162.
- Elekes K, Florey E. 1987a. Immunocytochemical evidence for the GABAergic innervation of the stretch receptor neurons in crayfish. Neuroscience 22: 1111–1122.
- Elekes K, Florey E. 1987b. New types of synaptic connections in crayfish stretch receptor organs: an electron microscopic study. J Neurocytol 16: 613–626.
-
Fabian-Fine R,
Meinertzhagen IA,
Seyfarth EA.
2000.
Organization of efferent peripheral synapses at mechanosensory neurons in spiders.
J Comp Neurol
420:
195–210.
10.1002/(SICI)1096-9861(20000501)420:2<195::AID-CNE4>3.0.CO;2-Q CASPubMedWeb of Science®Google Scholar
- Forssberg H, Grillner S, Rossignol S. 1975. Phase dependent reflex reversal during walking in chronic spinal cats. Brain Res 85: 103–107.
- Frank K, Fuortes MGF. 1957. Presynaptic and postsynaptic inhibition of monosynaptic reflexes. Fed Proc Fed Am Soc Exp Biol 16: 39–40.
- Gossard J-P. 1996. Control of transmission in muscle group 1A afferents during fictive locomotion in the cat. J Neurophysiol 76: 4104–4112.
- Gossard J-P, Cabelguen J-M, Rossignol S. 1989. Intra-axonal recordings of cutaneous primary afferents during fictive locomotion in the cat. J Neurophysiol 62: 1177–1188.
- Hashemzadeh-Gargari H, Freschi JE. 1992. Histamine activates chloride conductance in motor neurons of the lobster cardiac ganglion. J Neurophysiol 68: 9–15.
- Katz PS. 1998. Neuromodulation intrinsic to the central pattern generator for escape swimming in Tritonia. Ann N Y Acad Sci 860: 181–188.
- Kennedy D, Calabrese RL, Wine JJ. 1974. Presynaptic inhibition: primary afferent depolarization in crayfish neurons. Science 186: 451–454.
- Kiehn O, Kjaerulff O. 1998. Distribution of central pattern generators for rhythmic motor outputs in the spinal cord of limbed vertebrates. Ann N Y Acad Sci 860: 110–129.
- Kirk MD. 1985. Presynaptic inhibition in the crayfish CNS: pathways and synaptic mechanisms. J Neurophysiol 54: 1305–1325.
- Kirk MD, Govind CK. 1990. Presynaptic inhibition of primary afferent synapses in the crayfish. In: K Wiese, W-D Krenz, J Tautz, H Reichert, B Mulloney, editors. Frontiers in crustacean neurobiology. Basel: Birkhaser Verlag. 140–149.
- Kirk MD, Wine JJ. 1984. Identified interneurons produce both primary afferent depolarization and presynaptic inhibition. Science 225: 854–856.
- Kuffler SW, Eyzaguirre C. 1955. Synaptic inhibition in an isolated nerve cell. J Gen Physiol 39: 155–184.
- Le Ray D, Cattaert D. 1997. Neural mechanisms of reflex reversal in coxo-basipodite depressor motor neurons of the crayfish. J Neurophysiol 77: 1963–1978.
- Le Ray D, Cattaert D. 1999. Active motor neurons potentiate their own sensory inputs via glutamate-induced long-term potentiation. J Neurosci 19: 1473–1483.
- Lee SC, Krasne FB. 1993. Ultrastructure of the circuit providing input to the crayfish lateral giant neurons. J Comp Neurol 327: 271–288.
- Marchand AR, Leibrock CS. 1994. Functional aspects of central electrical coupling in mechanoreceptor afferents of crayfish. Brain Res 667: 98–106.
- Marchand AR, Barnes WJP, Cattaert D. 1997. Primary afferent depolarizations of sensory origin within contact- sensitive mechanoreceptive afferents of a crayfish leg. J Neurophysiol 77: 3340–3354.
- Mulloney B, Hall WM. 1991. Neurons with histaminelike immunoreactivity in the segmental and stomatogastric nervous systems of the crayfish Pacifastacus leniusculus and the lobster Homarus americanus. Cell Tissue Res 266: 197–207.
- Newland PL, Aonuma H, Sato M, Nagayama T. 1996. Presynaptic inhibition of exteroceptive afferents by proprioceptive afferents in the terminal abdominal ganglion of the crayfish. J Neurophysiol 76: 1047–1058.
- Nusbaum MP, Blitz DM, Swensen AM, Wood D, Marder E. 2001. The roles of co-transmission in neural network modulation. Trends Neurosci 24: 146–154.
- Pasztor VM, Bush BMH. 1987. Peripheral modulation of mechanosensitivity in primary afferent neurons. Nature 326: 793–795.
- Pasztor VM, Bush BMH. 1989. Primary afferent responses of a crustacean mechanoreceptor are modulated by proctolin, octopanine, and serotonin. J Neurobiol 20: 234–254.
- Pasztor VM, MacMillan DL. 1990. The actions of proctolin, octopamine and serotonin on crustacean proprioreptors show species and neurone specificity. J Exp Biol 152: 485–504.
- Rossi-Durand C. 1993. Peripheral proprioceptive modulation in crayfish walking leg by serotonin. Brain Res 632: 1–15.
-
Selverston AI.
1985.
Model neural networks and behavior.
New York:
Plenum Press. p
1–548
10.1007/978-1-4757-5858-0 Google Scholar
- Sherrington CS. 1910. Flexion-reflex of the limb, crossed extension reflex stepping and standing. J Physiol (Lond) 40: 28–121.
- Sillar KT, Skorupski P. 1986. Central input to primary afferent neurons in crayfish, Pacifastacus leniusculus, is correlated with rhythmic motor output of thoracic ganglia. J Neurophysiol 55: 678–688.
- Skorupski P. 1996. Octopamine induces steady-state reflex reversal in crayfish thoracic ganglia. J Neurophysiol 76: 93–108.
- Skorupski P, Sillar KT. 1986. Phase-dependent reversal of reflexes mediated by the thoracocoxal muscle receptor organ in the crayfish, Pacifastacus leniusculus. J Neurophysiol 55: 689–695.
- Vedel JP. 1982. Reflex reversal resulting from active movements in the antenna of the rock lobster. J Exp Biol 101: 121–133.
- Watson AHD. 1992. Presynaptic modulation of sensory afferent in the invertebrate and vertebrate nervous system. Comp Biochem Physiol 103: 227–239.
- Watson AHD, England RCD. 1991. The distribution and interactions between GABA-immunoreactive and non-immunoreactive processes presynaptic to afferents from Campaniform Sensilla on the trochantes of the locust leg. Cell Tissue Res 266: 331–341.
- Wilson DM. 1961. The central nervous control of flight in locust. J Exp Biol 38: 471–490.
- Wolf H, Burrows M. 1995. Proprioceptive sensory neurons of a locust leg receive rhythmic presynaptic inhibition during walking. J Neurosci 15: 5623–5636.
- Yeh SR, Fricke RA, Edwards DH. 1996. The effect of social experience on serotonergic modulation of the escape circuit of crayfish [see comments]. Science 271: 366–369.
- Yeh SR, Musolf BE, Edwards DH. 1997. Neuronal adaptations to changes in the social dominance status of crayfish. J Neurosci 17: 697–708.