Composition of e-cigarette aerosols: A review and risk assessment of selected compounds
Corresponding Author
Jonathan Heywood
Paustenbach and Associates, Denver, Colorado, USA
Insight Exposure & Risk Sciences Group, Boulder, Colorado, USA
Correspondence
Jonathan Heywood, Insight Exposure & Risk Sciences Group, 1790 38th Street, Suite 201, Boulder, CO, USA.
Email: [email protected]
Search for more papers by this authorGrayson Abele
Paustenbach and Associates, Denver, Colorado, USA
Search for more papers by this authorBlake Langenbach
Paustenbach and Associates, Denver, Colorado, USA
Search for more papers by this authorSydney Litvin
Paustenbach and Associates, Denver, Colorado, USA
Search for more papers by this authorSarah Smallets
Paustenbach and Associates, Denver, Colorado, USA
Search for more papers by this authorDennis Paustenbach
Paustenbach and Associates, Jackson, Wyoming, USA
Search for more papers by this authorCorresponding Author
Jonathan Heywood
Paustenbach and Associates, Denver, Colorado, USA
Insight Exposure & Risk Sciences Group, Boulder, Colorado, USA
Correspondence
Jonathan Heywood, Insight Exposure & Risk Sciences Group, 1790 38th Street, Suite 201, Boulder, CO, USA.
Email: [email protected]
Search for more papers by this authorGrayson Abele
Paustenbach and Associates, Denver, Colorado, USA
Search for more papers by this authorBlake Langenbach
Paustenbach and Associates, Denver, Colorado, USA
Search for more papers by this authorSydney Litvin
Paustenbach and Associates, Denver, Colorado, USA
Search for more papers by this authorSarah Smallets
Paustenbach and Associates, Denver, Colorado, USA
Search for more papers by this authorDennis Paustenbach
Paustenbach and Associates, Jackson, Wyoming, USA
Search for more papers by this authorJonathan Heywood and Dennis Paustenbach contributed equally.
Funding information: This work received no external funding.
Abstract
The potential harms and benefits of e-cigarettes, or electronic nicotine delivery systems (ENDS), have received significant attention from public health and regulatory communities. Such products may provide a reduced risk means of nicotine delivery for combustible cigarette smokers while being inappropriately appealing to nicotine naive youth. Numerous authors have examined the chemical complexity of aerosols from various open- and closed-system ENDS. This body of literature is reviewed here, with the risks of ENDS aerosol exposure among users evaluated with a margin of exposure (MoE) approach for two non-carcinogens (methylglyoxal, butyraldehyde) and a cancer risk analysis for the carcinogen N-nitrosonornicotine (NNN). We identified 96 relevant papers, including 17, 13, and 5 reporting data for methylglyoxal, butyraldehyde, and NNN, respectively. Using low-end (minimum aerosol concentration, low ENDS use) and high-end (maximum aerosol concentration, high ENDS use) assumptions, estimated doses for methylglyoxal (1.78 × 10−3–135 μg/kg-bw/day) and butyraldehyde (1.9 × 10−4–66.54 μg/kg-bw/day) corresponded to MoEs of 227–17,200,000 and 271–280,000,000, respectively, using identified points of departure (PoDs). Doses of 9.90 × 10−6–1.99 × 10−4 μg/kg-bw/day NNN corresponded to 1.4–28 surplus cancers per 100,000 ENDS users, relative to a NNN-attributable surplus of 7440 per 100,000 cigarette smokers. It was concluded that methylglyoxal and butyraldehyde in ENDS aerosols, while not innocuous, did not present a significant risk of irritant effects among ENDS users. The carcinogenic risks of NNN in ENDS aerosols were reduced, but not eliminated, relative to concentrations reported in combustible cigarette smoke.
CONFLICT OF INTEREST STATEMENT
At the time of submission, all authors were employed by Paustenbach and Associates, a consulting firm that provides scientific advice to the government, corporations, law firms, and various scientific/professional organizations. Paustenbach and Associates has been engaged by processors or distributors of ENDS products in various litigation matters and advisory roles. No outside financial support was provided to any of the authors or Paustenbach and Associates. Dennis Paustenbach has served as an expert in ENDS litigation and may, along with others, be called upon in the future to serve as an expert in ENDS litigation. The study design, execution, results, and interpretation of the current work are the sole responsibility of the authors, and this manuscript was prepared and written exclusively by the authors, who did not receive input from counsel or any other external interests during preparation of this text.
Open Research
DATA AVAILABILITY STATEMENT
There is no data associated with this manuscript.
REFERENCES
- Abrams, D. B., Adriaens, K., Bates, C., Baeyens, F., Borland, R., Cox, S., Dawkins, L., Etter, J.-F., Farsalinos, K., Hajek, P., Jarvis, M. J., & Kozlowski, L. T. (2021). Regulation of e-cigarette flavours—A response. Government of the Netherlands.
- Adams, J. D., Lavoie, E. J., O'Mara-Adams, K. J., Hoffmann, D., Carey, K. D., & Marshall, M. V. (1985). Pharmacokinetics of N'-nitrosonornicotine and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone in laboratory animals. Cancer Letters, 28(2), 195–201. https://doi.org/10.1016/0304-3835(85)90075-8
- Agency for Toxic Substances and Disease Registry (ATSDR). (2022). Calculating hazard quotients and cancer risk estimates. Washington, D.C: Centers for Disease Control and Prevention (CDC). https://www.atsdr.cdc.gov/pha-guidance/conducting_scientific_evaluations/epcs_and_exposure_calculations/hazardquotients_cancerrisk.html
- Allen, J. G., Flanigan, S. S., LeBlanc, M., Vallarino, J., MacNaughton, P., Stewart, J. H., & Christiani, D. C. (2016). Flavoring chemicals in e-cigarettes: Diacetyl, 2,3-pentanedione, and acetoin in a sample of 51 products, including fruit-, candy-, and cocktail-flavored e-cigarettes. Environmental Health Perspectives, 124(6), 733–739. https://doi.org/10.1289/ehp.1510185
- Ammigan, N., Nair, U. J., Amonkar, A. J., & Bhide, S. V. (1989). Modulations in the biotransformation of tobacco extract and N'-nitrosonornicotine under differential dietary protein status. Journal of Biochemical Toxicology, 4(1), 7–13. https://doi.org/10.1002/jbt.2570040103
- Azimi, P., Keshavarz, Z., Lahaie Luna, M., Cedeno Laurent, J. G., Vallarino, J., Christiani, D. C., & Allen, J. G. (2021). An unrecognized hazard in e-cigarette vapor: Preliminary quantification of methylglyoxal formation from propylene glycol in e-cigarettes. International Journal of Environmental Research and Public Health, 18(2), 385. https://doi.org/10.3390/ijerph18020385
- Azuma, K., Uchiyama, I., Uchiyama, S., & Kunugita, N. (2016). Assessment of inhalation exposure to indoor air pollutants: Screening for health risks of multiple pollutants in Japanese dwellings. Environmental Research, 145, 39–49. https://doi.org/10.1016/j.envres.2015.11.015
- Balfour, D. J. K., Benowitz, N. L., Colby, S. M., Hatsukami, D. K., Lando, H. A., Leischow, S. J., Lerman, C., Mermelstein, R. J., Niaura, R., Perkins, K. A., Pomerleau, O. F., Rigotti, N. A., Swan, G. E., Warner, K. E., & West, R. (2021). Balancing consideration of the risks and benefits of e-cigarettes. American Journal of Public Health and the nation's Health, 111(9), 1661–1672. https://doi.org/10.2105/AJPH.2021.306416
10.2105/AJPH.2021.306416 Google Scholar
- Beauval, N., Antherieu, S., Soyez, M., Gengler, N., Grova, N., Howsam, M., Hardy, E. M., Fischer, M., Appenzeller, B. M. R., Goossens, J. F., Allorge, D., Garcon, G., Lo-Guidice, J. M., & Garat, A. (2017). Chemical evaluation of electronic cigarettes: Multicomponent analysis of liquid refills and their corresponding aerosols. Journal of Analytical Toxicology, 41(8), 670–678. https://doi.org/10.1093/jat/bkx054
- Bekki, K., Uchiyama, S., Ohta, K., Inaba, Y., Nakagome, H., & Kunugita, N. (2014). Carbonyl compounds generated from electronic cigarettes. International Journal of Environmental Research and Public Health, 11, 11192–11200. https://doi.org/10.3390/ijerph111111192
- Belushkin, M., Djoko, D. T., Esposito, M., Korneliou, A., Jeannet, C., Lazzerini, M., & Jaccard, G. (2020). Selected harmful and potentially harmful constituents levels in commercial e-cigarettes. Chemical Research in Toxicology, 33(2), 657–668. https://doi.org/10.1021/acs.chemrestox.9b00470
- Benowitz, N. L., St. Helen, G., & Liakoni, E. (2021). Clinical pharmacology of electronic nicotine delivery systems (ENDS): Implications for benefits and risks in the promotion of the combusted tobacco endgame. The Journal of Clinical Pharmacology, 61, S18–S36. https://doi.org/10.1002/jcph.1915
- Birdsey, J., Cornelius, M., Jamal, A., Park-Lee, E., Cooper, M. R., Wang, J., Sawdey, M., Cullen, K. A., & Neff, L. (2023). Tobacco product use among U.S. middle and high school students—National Youth Tobacco Survey, 2023. Morbidity and Mortality Weekly Report, 72(44), 1173–1182. https://doi.org/10.15585/mmwr.mm7244a1
- Bitzer, Z. T., Goel, R., Reilly, S. M., Bhangu, G., Trushin, N., Foulds, J., Muscat, J., & Richie, J. P. Jr. (2019). Emissions of free radicals, carbonyls, and nicotine from the NIDA standardized research electronic cigarette and comparison to similar commercial devices. Chemical Research in Toxicology, 32(1), 130–138. https://doi.org/10.1021/acs.chemrestox.8b00235
- Bitzer, Z. T., Goel, R., Reilly, S. M., Elias, R. J., Silakov, A., Foulds, J., Muscat, J., & Richie, J. P. Jr. (2018). Effect of flavoring chemicals on free radical formation in electronic cigarette aerosols. Free Radical Biology and Medicine, 120, 72–79. https://doi.org/10.1016/j.freeradbiomed.2018.03.020
- Bitzer, Z. T., Goel, R., Reilly, S. M., Foulds, J., Muscat, J., Elias, R. J., & Richie, J. P. Jr. (2018). Effects of solvent and temperature on free radical formation in electronic cigarette aerosols. Chemical Research in Toxicology, 31(1), 4–12. https://doi.org/10.1021/acs.chemrestox.7b00116
- Blair, S. L., Epstein, S. A., Nizkorodov, S. A., & Staimer, N. (2015). A real-time fast-flow tube study of VOC and particulate emissions from electronic, potentially reduced-harm, conventional, and reference cigarettes. Aerosol Science and Technology, 49(9), 816–827. https://doi.org/10.1080/02786826.2015.1076156
- Blount, B. C., Karwowski, M. P., Morel-Espinosa, M., Rees, J., Sosnoff, C., Cowan, E., Gardner, M., Wang, L., Valentin-Blasini, L., Silva, L., De Jesús, V. R., Kuklenyik, Z., Watson, C., Seyler, T., Xia, B., Chambers, D., Briss, P., King, B. A., Delaney, L., … Pirkle, J. L. (2019). Evaluation of bronchoalveolar lavage fluid from patients in an outbreak of e-cigarette, or vaping, product use-associated lung injury—10 states, August-October 2019. The Morbidity and Mortality Weekly Report (MMWR), 68(45), 1040–1041. https://doi.org/10.15585/mmwr.mm6845e2
- Blount, B. C., Karwowski, M. P., Shields, P. G., Morel-Espinosa, M., Valentin-Blasini, L., Gardner, M., Braselton, M., Brosius, C. R., Caron, K. T., Chambers, D., Corstvet, J., Cowan, E., De Jesús, V. R., Espinosa, P., Fernandez, C., Holder, C., Kuklenyik, Z., Kusovschi, J. D., Newman, C., … Pirkle, J. L. (2020). Vitamin E acetate in bronchoalveolar-lavage fluid associated with EVALI. The New England Journal of Medicine (NEJM), 382(8), 697–705. https://doi.org/10.1056/NEJMoa1916433
- Bos, P. M. J., Soeteman-Hernandez, L. G., & Talhout, R. (2021). Risk assessment of components in tobacco smoke and e-cigarette aerosols: A pragmatic choice of dose metrics. Inhalation Toxicology, 33(3), 81–95. https://doi.org/10.1080/08958378.2021.1909678
- Boyland, E., Roe, F. J. C., Gorrod, J. W., & Mitchley, B. C. V. (1964). The carcinogenicity of nitrosoanabasine, a possible constituent of tobacco smoke. British Journal of Cancer, 18(2), 265–270. https://doi.org/10.1038/bjc.1964.31
- Bush, A., Lintowska, A., Mazur, A., Hadjipanayis, A., Grossman, Z., del Torso, S., Michaud, P.-A., Doan, S., Romankevych, I., Slaats, M., Utkus, A., Dembiński, Ł., Slobodanac, M., & Valiulis, A. (2021). E-cigarettes as a growing threat for children and adolescents: Position statement from the European Academy of Paediatrics [perspective]. Frontiers in Pediatrics, 9, 698613. https://doi.org/10.3389/fped.2021.698613
- Butler, A. R., Lindson, N., Fanshawe, T. R., Theodoulou, A., Begh, R., Hajek, P., McRobbie, H., Bullen, C., Notley, C., Rigotti, N. A., & Hartmann-Boyce, J. (2022). Longer-term use of electronic cigarettes when provided as a stop smoking aid: Systematic review with meta-analyses. Preventive Medicine, 165(Pt B), 107182. https://doi.org/10.1016/j.ypmed.2022.107182
- Cahours, X., & Prasad, K. (2018). A review of electronic cigarette use behaviour studies. Contributions to Tobacco & Nicotine Research, 28(2), 81–92. https://doi.org/10.2478/cttr-2018-0009
10.2478/cttr-2018-0009 Google Scholar
- Cajelli, E., Canonero, R., Martelli, A., & Brambilla, G. (1987). Methylglyoxal-induced mutation to 6-thioguanine resistance in V79 cells. Mutation Research, 190(1), 47–50. https://doi.org/10.1016/0165-7992(87)90081-9
- Calabrese, E. J. (2013). Origin of the linearity no threshold (LNT) dose-response concept. Archives of Toxicology, 87(9), 1621–1633. https://doi.org/10.1007/s00204-013-1104-7
- Calabrese, E. J. (2015). On the origins of the linear no-threshold (LNT) dogma by means of untruths, artful dodges and blind faith. Environmental Research, 142, 432–442. https://doi.org/10.1016/j.envres.2015.07.011
- Calabrese, E. J. (2019). The linear no-threshold (LNT) dose response model: A comprehensive assessment of its historical and scientific foundations. Chemico-Biological Interactions, 301, 6–25. https://doi.org/10.1016/j.cbi.2018.11.020
- Calabrese, E. J., & Selby, P. B. (2023). Muller mistakes: The linear no-threshold (LNT) dose response and US EPA's cancer risk assessment policies and practices. Chemico-Biological Interactions, 383, 110653. https://doi.org/10.1016/j.cbi.2023.110653
- Canchola, A., Meletz, R., Khandakar, R. A., Woods, M., & Yin, Y. H. (2022). Temperature dependence of emission product distribution from vaping of vitamin E acetate. PLoS ONE, 17(3), e0265365. https://doi.org/10.1371/journal.pone.0265365
- Casebolt, R., Cook, S. J., Islas, A., Brown, A., Castle, K., & Dutcher, D. D. (2020). Carbon monoxide concentration in mainstream e-cigarette emissions measured with diode laser spectroscopy. Tobacco Control, 29(6), 652–655. https://doi.org/10.1136/tobaccocontrol-2019-055078
- CDC. (2021). E-cigarette, or vaping, products visual dictionary. Atlanta, GA: Centers for Disease Control and Prevention.
- Chen, X., Bailey, P. C., Yang, C., Hiraki, B., Oldham, M. J., & Gillman, I. G. (2021). Targeted characterization of the chemical composition of JUUL systems aerosol and comparison with 3R4F reference cigarettes and IQOS heat sticks. Separations, 8(10), 168. https://doi.org/10.3390/separations8100168
- Cheng, W.-H., Chang, C.-Y., Chen, Y.-Y., & Su, H.-W. (2021). Chemical composition of aerosols of an electronic cigarette. Aerosol and Air Quality Research, 21(7), 200672. https://doi.org/10.4209/aaqr.200672
- Clapp, P. W., & Jaspers, I. (2017). Electronic cigarettes: Their constituents and potential links to asthma. Current Allergy and Asthma Reports, 17(11), 79. https://doi.org/10.1007/s11882-017-0747-5
- Committee on Toxicity (COT). (2012). Statement on methylglyoxal. C. P. a. t. E. Committee on Toxicity of Chemicals in Food.
- Committee on Toxicity of Chemicals in Food, Consumer Products and the Environment (COT). (2020). Statement on the potential toxicological risks from electronic nicotine (and non-nicotine) delivery systems (E(N)NDS—e-cigarettes). https://cot.food.gov.uk/sites/default/files/2020-09/COT%20E%28N%29NDS%20statement%202020-04.pdf
- Conklin, D. J., Ogunwale, M. A., Chen, Y., Theis, W. S., Nantz, M. H., Fu, X. A., Chen, L. C., Riggs, D. W., Lorkiewicz, P., Bhatnagar, A., & Srivastava, S. (2018). Electronic cigarette-generated aldehydes: The contribution of e-liquid components to their formation and the use of urinary aldehyde metabolites as biomarkers of exposure. Aerosol Science and Technology, 52(11), 1219–1232. https://doi.org/10.1080/02786826.2018.1500013
- Cooperation Centre for Scientific Research Relative to Tobacco (CORESTA). (2015). Routine analytical machine for e-cigarette aerosol generation and collection—Definitions and standard conditions. (Vol. CORESTA Recommended Method No. 81): Cooperation Centre for Scientific Research Relative to Tobacco.
- Crosswhite, M., Bailey, P. C., Jeong, L. N., Lioubomirov, A., Yang, C., Ozvald, A., Jameson, J. B., & Gillman, I. G. (2021). Non-targeted chemical characterization of JUUL Virginia Tobacco flavored aerosols using liquid and gas chromatography. Separations, 8(9), 130. https://doi.org/10.3390/separations8090130
- Crosswhite, M., Jeong, L., Yang, C., Jameson, B., Oldham, M., Cook, D., & Gillman, G. (2020). Comprehensive evaluation of aerosol constituents from Juul Virginia tobacco 5.0% using non-targeted analysis: LC-HRMS analysis of E-vapor aerosols, data acquisition and processing. Juul Labs Science.
- Crosswhite, M., Jeong, L. N., Bailey, P. C., Jameson, J. B., Lioubomirov, A., Cook, D., Yang, C., Ozvald, A., Lyndon, M., & Gillman, I. G. (2022). Non-targeted chemical characterization of JUUL-menthol-flavored aerosols using liquid and gas chromatography. Separations, 9(11), 367. https://doi.org/10.3390/separations9110367
- Cunningham, A., McAdam, K., Thissen, J., & Digard, H. (2020). The evolving e-cigarette: Comparative chemical analyses of e-cigarette vapor and cigarette smoke. Frontiers in Toxicology., 2, 586674. https://doi.org/10.3389/ftox.2020.586674
- Dautzenberg, B., & Bricard, D. (2015). Real-time characterization of e-cigarettes use: The 1 million puffs study. Journal of Addiction Research & Therapy, 6(2), 1–5. https://doi.org/10.4172/2155-6105.1000229
10.4172/2155-6105.1000229 Google Scholar
- de Souza Prestes, A., Dos Santos, M. M., Ecker, A., de Macedo, G. T., Fachinetto, R., Bressan, G. N., da Rocha, J. B. T., & Barbosa, N. V. (2019). Methylglyoxal disturbs the expression of antioxidant, apoptotic and glycation responsive genes and triggers programmed cell death in human leukocytes. Toxicology in Vitro, 55, 33–42. https://doi.org/10.1016/j.tiv.2018.11.001
- Deshmukh, D. K., Kawamura, K., & Deb, M. K. (2016). Dicarboxylic acids, ω-oxocarboxylic acids, α-dicarbonyls, WSOC, OC, EC, and inorganic ions in wintertime size-segregated aerosols from central India: Sources and formation processes. Chemosphere, 161, 27–42. https://doi.org/10.1016/j.chemosphere.2016.06.107
- Dibaji, S. A. R., Guha, S., Arab, A., Murray, B. T., & Myers, M. R. (2018). Accuracy of commercial electronic nicotine delivery systems (ENDS) temperature control technology. PLoS ONE, 13(11), e0206937. https://doi.org/10.1371/journal.pone.0206937
- Dove, M. S., Gee, K., & Tong, E. K. (2023). Flavored tobacco sales restrictions and teen e-cigarette use: Quasi-experimental evidence from California. Nicotine and Tobacco Research, 25(1), 127–134. https://doi.org/10.1093/ntr/ntac200
- Eddingsaas, N., Pagano, T., Cummings, C., Rahman, I., Robinson, R., & Hensel, E. (2018). Qualitative analysis of e-liquid emissions as a function of flavor additives using two aerosol capture methods. International Journal of Environmental Research and Public Health, 15, 323. https://doi.org/10.3390/ijerph15020323
- Edwards, S. H., Rossiter, L. M., Taylor, K. M., Holman, M. I., Ding, Y. S., & Watson', C. H. (2017). Tobacco-specific nitrosamines in the tobacco and mainstream smoke of U.S. commercial cigarettes. Chemical Research in Toxicology, 12(2), 540–551.
10.1021/acs.chemrestox.6b00268 Google Scholar
- El-Hellani, A., Al-Moussawi, S., El-Hage, R., Talih, S., Salman, R., Shihadeh, A., & Saliba, N. A. (2019). Carbon monoxide and small hydrocarbon emissions from sub-ohm electronic cigarettes. Chemical Research in Toxicology, 32(2), 312–317. https://doi.org/10.1021/acs.chemrestox.8b00324
- El-Hellani, A., Salman, R., El-Hage, R., Talih, S., Malek, N., Baalbaki, R., Karaoghlanian, N., Nakkash, R., Shihadeh, A., & Saliba, N. A. (2018). Nicotine and carbonyl emissions from popular electronic cigarette products: Correlation to liquid composition and design characteristics. Nicotine & Tobacco Research, 20(2), 215–223. https://doi.org/10.1093/ntr/ntw280
- El-Hellani, A., Soule, E. K., Daoud, M., Salman, R., El Hage, R., Ardati, O., El-Kaassamani, M., Yassine, A., Karaoghlanian, N., & Talih, S. (2022). Assessing toxicant emissions from e-liquids with DIY additives used in response to a potential flavour ban in e-cigarettes. Tobacco Control, 31(3), s245–s248. https://doi.org/10.1136/tc-2022-057505
- Eshraghian, E. A., & Al-Delaimy, W. K. (2021). A review of constituents identified in e-cigarette liquids and aerosols. Tobacco Prevention & Cessation, 7(10), 10. https://doi.org/10.18332/tpc/131111
- Etter, J. F., & Bullen, C. (2014). A longitudinal study of electronic cigarette users. Addictive Behaviors, 39(2), 491–494. https://doi.org/10.1016/j.addbeh.2013.10.028
- European Chemicals Agency (ECHA). (2022). Acute toxicity endpoint summary, pyruvaldehyde. https://echa.europa.eu/registration-dossier/-/registered-dossier/10128/7/3/1
- European Chemicals Agency (ECHA). (2024). Butyraldehyde registration dossier, toxicological information, endpoint summary. https://echa.europa.eu/registration-dossier/-/registered-dossier/15033/7/6/1
- European Food Safety Authority (EFSA). (2023). Margin of exposure. European Food Safety Authority. https://www.efsa.europa.eu/en/topics/topic/margin-exposure#:~:text=Substances
- Famele, M., Palmisani, J., Ferranti, C., Abenavoli, C., Palleschi, L., Mancinelli, R., Fidente, R. M., de Gennaro, G., & Draisci, R. (2017). Liquid chromatography with tandem mass spectrometry method for the determination of nicotine and minor tobacco alkaloids in electronic cigarette refill liquids and second-hand generated aerosol. Journal of Separation Science, 40(5), 1049–1056. https://doi.org/10.1002/jssc.201601076
- Farsalinos, K. E., & Gillman, G. (2018). Carbonyl emissions in e-cigarette aerosol: A systematic review and methodological considerations [review]. Frontiers in Physiology, 8, 1119. https://doi.org/10.3389/fphys.2017.01119
- Farsalinos, K. E., Gillman, G., Poulas, K., & Voudris, V. (2015). Tobacco-specific nitrosamines in electronic cigarettes: Comparison between liquid and aerosol levels. International Journal of Environmental Research and Public Health, 12(8), 9046–9053. https://doi.org/10.3390/ijerph120809046
- Farsalinos, K. E., Kistler, K. A., Gillman, G., & Voudris, V. (2015). Evaluation of electronic cigarette liquids and aerosol for the presence of selected inhalation toxins. Nicotine & Tobacco Research, 17(2), 168–174. https://doi.org/10.1093/ntr/ntu176
- Farsalinos, K. E., & Voudris, V. (2018). Do flavouring compounds contribute to aldehyde emissions in e-cigarettes? Food and Chemical Toxicology, 115, 212–217. https://doi.org/10.1016/j.fct.2018.02.059
- Farsalinos, K. E., Voudris, V., & Poulas, K. (2015). E-cigarettes generate high levels of aldehydes only in ‘dry puff’ conditions. Addiction, 110(8), 1352–1356. https://doi.org/10.1111/add.12942
- Farsalinos, K. E., Voudris, V., Spyrou, A., & Poulas, K. (2017). E-cigarettes emit very high formaldehyde levels only in conditions that are aversive to users: A replication study under verified realistic use conditions. Food and Chemical Toxicology, 109, 90–94. https://doi.org/10.1016/j.fct.2017.08.044
- Farsalinos, K. E., Yannovits, N., Sarri, T., Voudris, V., & Poulas, K. (2018). Nicotine delivery to the aerosol of a heat-not-burn tobacco product: Comparison with a tobacco cigarette and e-cigarettes. Nicotine & Tobacco Research, 20(8), 1004–1009. https://doi.org/10.1093/ntr/ntx138
- Flora, J. W., Meruva, N., Huang, C. B., Wilkinson, C. T., Ballentine, R., Smith, D. C., Werley, M. S., & McKinney, W. J. (2016). Characterization of potential impurities and degradation products in electronic cigarette formulations and aerosols. Regulatory Toxicology and Pharmacology, 74, 1–11. https://doi.org/10.1016/j.yrtph.2015.11.009
- Friedman, A. S., & Warner, K. E. (2022). The e-cigarette flavor debate - promoting adolescent and adult welfare. New England Journal of Medicine, 386(17), 1581–1583. https://doi.org/10.1056/nejmp2119107
- Fujioka, K., & Shibamoto, T. (2006). Determination of toxic carbonyl compounds in cigarette smoke. Environmental Toxicology, 21(1), 47–54. https://doi.org/10.1002/tox.20153
- Gage, J. C. (1970). The subacute inhalation toxicity of 109 industrial chemicals. British Journal of Indstrial Medicine, 27(1), 1–18. https://doi.org/10.1136/oem.27.1.1
- Garcia-Gomez, D., Gaisl, T., Barrios-Collado, C., Vidal-de-Miguel, G., Kohler, M., & Zenobi, R. (2016). Real-time chemical analysis of e-cigarette aerosols by means of secondary electrospray ionization mass spectrometry. Chemistry, 22(7), 2452–2457. https://doi.org/10.1002/chem.201504450
- Geiss, O., Bianchi, I., Barahona, F., & Barrero-Moreno, J. (2015). Characterisation of mainstream and passive vapours emitted by selected electronic cigarettes. International Journal of Hygiene and Environmental Health, 218(1), 169–180. https://doi.org/10.1016/j.ijheh.2014.10.001
- Geiss, O., Bianchi, I., & Barrero-Moreno, J. (2016). Correlation of volatile carbonyl yields emitted by e-cigarettes with the temperature of the heating coil and the perceived sensorial quality of the generated vapours. International Journal of Hygiene and Environmental Health, 219, 268–277. https://doi.org/10.1016/j.ijheh.2016.01.004
- Ghosh, M., Talukdar, D., Ghosh, S., Bhattacharyya, N., Ray, M., & Ray, S. (2006). In vivo assessment of toxicity and pharmacokinetics of methylglyoxal: Augmentation of the curative effect of methylglyoxal on cancer-bearing mice by ascorbic acid and creatine. Toxicology and Applied Pharmacology, 212(1), 45–58. https://doi.org/10.1016/j.taap.2005.07.003
- Gillman, I. G., Kistler, K. A., Stewart, E. W., & Paolantonio, A. R. (2016). Effect of variable power levels on the yield of total aerosol mass and formation of aldehydes in e-cigarette aerosols. Regulatory Toxicology and Pharmacology, 75, 58–65. https://doi.org/10.1016/j.yrtph.2015.12.019
- Gillman, I. G., Pennington, A. S. C., Humphries, K. E., & Oldham, M. J. (2020). Determining the impact of flavored e-liquids on aldehyde production during vaping. Regulatory Toxicology and Pharmacology, 112, 104588. https://doi.org/10.1016/j.yrtph.2020.104588
- Godbout, J. P., Pesavento, J., Hartman, M. E., Manson, S. R., & Freund, G. G. (2002). Methylglyoxal enhances cisplatin-induced cytotoxicity by activating protein kinase C-epsilon. The Journal of Biological Chemistry, 277(4), 2554–2561. https://doi.org/10.1074/jbc.M100385200
- Goel, R., Durand, E., Trushin, N., Prokopczyk, B., Foulds, J., Elias, R. J., & Richie, J. P. Jr. (2015). Highly reactive free radicals in electronic cigarette aerosols. Chemical Research in Toxicology, 28(9), 1675–1677. https://doi.org/10.1021/acs.chemrestox.5b00220
- Goniewicz, M. L., Knysak, J., Gawron, M., Kosmider, L., Sobczak, A., Kurek, J., Prokopowicz, A., Jablonska-Czapla, M., Rosik-Dulewska, C., Havel, C., Jacob, P., & Benowitz, N. (2014). Levels of selected carcinogens and toxicants in vapour from electronic cigarettes. Tobacco Control, 23, 133–139. https://doi.org/10.1136/tobaccocontrol-2012-050859
- Gottlieb, S. (2019). Scott Gottlieb tweet on counterfeit e-cigarettes. Retrieved February 19, 2024, from https://twitter.com/ScottGottliebMD/status/1176953676839231488
- Gotts, J. E., Jordt, S. E., McConnell, R., & Tarran, R. (2019). What are the respiratory effects of e-cigarettes? BMJ, 366, l5275. https://doi.org/10.1136/bmj.l5275
- Haddad, C., Salman, R., El-Hellani, A., Talih, S., Shihadeh, A., & Saliba, N. A. (2019). Reactive oxygen species emissions from supra- and sub-ohm electronic cigarettes. Journal of Analytical Toxicology, 43(1), 45–50. https://doi.org/10.1093/jat/bky065
- Hahn, J., Monakhova, Y. B., Hengen, J., Kohl-Himmelseher, M., Schüssler, J., Hahn, H., Kuballa, T., & Lachenmeier, D. W. (2014). Electronic cigarettes: Overview of chemical composition and exposure estimation. Tobacco Induced Diseases, 12, 1–12. https://doi.org/10.1186/s12971-014-0023-6
- Havel, C. M., Benowitz, N. L., Jacob, P. 3rd, & St Helen, G. (2017). An electronic cigarette vaping machine for the characterization of aerosol delivery and composition. Nicotine & Tobacco Research, 19(10), 1224–1231. https://doi.org/10.1093/ntr/ntw147
- Hecht, S. S. (1998). Biochemistry, biology, and carcinogenicity of tobacco-specific N-nitrosamines. Chemical Research in Toxicology, 11(6), 559–603. https://doi.org/10.1021/tx980005y
- Hecht, S. S., Young, R., & Maeura, Y. (1983). Comparative carcinogenicity in F344 rats and Syrian golden hamsters of N'-nitrosonornicotine and N'-nitrosonornicotine-1-N-oxide. Cancer Letters, 20(3), 333–340. https://doi.org/10.1016/0304-3835(83)90032-0
- Helgertz, S., & Kingsbury, J. (2023). Teens less susceptible to vaping when restricted to tobacco-flavored e-cigarettes: Implications for flavored tobacco policies. Nicotine and Tobacco Research, 25(5), 991–995. https://doi.org/10.1093/ntr/ntac272
- Herrington, J. S., & Myers, C. (2015). Electronic cigarette solutions and resultant aerosol profiles. Journal of Chromatography A, 1418, 192–199. https://doi.org/10.1016/j.chroma.2015.09.034
- Hilltop Lab Animals, I. (2024). C57BL/6, C57BL/6HlaCVF growth curves. Retrieved July 10, 2024 from http://www.hilltoplabs.com/public/c57growth.html
- Ho, S. S., & Yu, J. Z. (2002). Concentrations of formaldehyde and other carbonyls in environments affected by incense burning. Journal of Environmental Monitoring, 4(5), 728–733. https://doi.org/10.1039/b200998f
- Ho, S. S., Yu, J. Z., Chu, K. W., & Yeung, L. L. (2006). Carbonyl emissions from commercial cooking sources in Hong Kong. Journal of the Air & Waste Management Association, 56(8), 1091–1098. https://doi.org/10.1080/10473289.2006.10464532
- Ho, S. S. H. H., Ip, H. S. S., Ho, K. F., Ng, L. P. T., Chan, C. S., Dai, W. T., & Cao, J. J. (2013). Hazardous airborne carbonyls emissions in industrial workplaces in China. Journal of the Air and Waste Management Association, 63(7), 864–877. https://doi.org/10.1080/10962247.2013.797519
- Hoffmann, D., Brunnemann, K. D., Prokopczyk, B., & Djordjevic, M. V. (1994). Tobacco-specific N-nitrosamines and ARECA-derived N-nitrosamines: Chemistry, biochemistry, carcinogenicity, and relevance to humans. Journal of Toxicology and Environmental Health, 41(1), 1–52. https://doi.org/10.1080/15287399409531825
- Hoffmann, D., Hecht, S. S., Ornaf, R. M., & Wynder, E. L. (1974). N'-Nitrosonornicotine in tobacco. Science, 186(4160), 265–267. https://doi.org/10.1126/science.186.4160.265
- Hubbs, A. F., Fluharty, K. L., Edwards, R. J., Bamabei, J. L., Grantham, J. T., Palmer, S. M., Kelly, F., Sargent, L. M., Reynolds, S. H., Mercer, R. R., Goravanahally, M. P., Kashon, M. L., Honaker, J. C., Jackson, M. C., Cumpston, A. M., Goldsmith, W. T., McKinney, W., Fedan, J. S., Battelli, L. A., … Sriram, K. (2016). Accumulation of ubiquitin and sequestosome-1 implicate protein damage in diacetyl-induced cytotoxicity. The American Journal of Pathology, 186(11), 2887–2908. https://doi.org/10.1016/j.ajpath.2016.07.018
- Hubbs, A. F., Kreiss, K., Cummings, K. J., Fluharty, K. L., O'Connell, R., Cole, A., Dodd, T. M., Clingerman, S. M., Flesher, J. R., Lee, R., Pagel, S., Battelli, L. A., Cumpston, A., Jackson, M., Kashon, M., Orandle, M. S., Fedan, J. S., & Sriram, K. (2019). Flavorings-related lung disease: A brief review and new mechanistic data. Toxicologic Pathology, 47(8), 1012–1026. https://doi.org/10.1177/0192623319879906
- Hutzler, C., Paschke, M., Kruschinski, S., Henkler, F., Hahn, J., & Luch, A. (2014). Chemical hazards present in liquids and vapors of electronic cigarettes. Archives of Toxicology, 88(7), 1295–1308. https://doi.org/10.1007/s00204-014-1294-7
- International Agency for Research on Cancer (IARC). (2012). N′-Nitrosonornicotine and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. International Agency for Research on Cancer (IARC).
- International Organization for Standardization (ISO). (2018). Vapour products—Routine analytical vaping machine—Definitions and standard conditions. In Tobacco, tobacco products and related equipment (Vol. ISO 20768:2018). International Organization for Standardization.
- Jaegers, N. R., Hu, W., Weber, T. J., & Hu, J. Z. (2021). Low-temperature (< 200 °C) degradation of electronic nicotine delivery system liquids generates toxic aldehydes. Scientific Reports, 11, 7800. https://doi.org/10.1038/s41598-021-87044-x
- Jameson, J. B., Wang, J., Bailey, P. C., Oldham, M. J., Smith, C. R., Jeong, L. N., Cook, D. K., Bates, A. L., Ullah, S., Pennington, A. S. C., & Gillman, I. G. (2023). Determination of chemical constituent yields in e-cigarette aerosol using partial and whole pod collections, a comparative analysis. Frontiers in Chemistry, 11, 1223967. https://doi.org/10.3389/fchem.2023.1223967
- Jensen, R. P., Luo, W., Pankow, J. F., Strongin, R. M., & Peyton, D. H. (2015). Hidden formaldehyde in e-cigarette aerosols. New England Journal of Medicine, 372(4), 392–394. https://doi.org/10.1056/NEJMc1413069
- Jiang, Y., Hengel, M., Pan, C., Seiber, J. N., & Shibamoto, T. (2013). Determination of toxic α-dicarbonyl compounds, glyoxal, methylglyoxal, and diacetyl, released to the headspace of lipid commodities upon heat treatment. Journal of Agriculture and Food Chemistry, 61(5), 1067–1071. https://doi.org/10.1021/jf3047303
- Jo, S. H., & Kim, K. H. (2016). Development of a sampling method for carbonyl compounds released due to the use of electronic cigarettes and quantitation of their conversion from liquid to aerosol. Journal of Chromatography A, 1429, 369–373. https://doi.org/10.1016/j.chroma.2015.12.061
- Kalapos, M. P. (1999). Methylglyoxal in living organisms: Chemistry, biochemistry, toxicology and biological implications. Toxicology Letters, 110(3), 145–175. https://doi.org/10.1016/s0378-4274(99)00160-5
- Kim, Y. H., & Kim, K. H. (2015). A novel method to quantify the emission and conversion of VOCs in the smoking of electronic cigarettes. Scientific Reports, 5, 16383. https://doi.org/10.1038/srep16383
- Klager, S., Vallarino, J., MacNaughton, P., Christiani, D. C., Lu, Q., & Allen, J. G. (2017). Flavoring chemicals and aldehydes in e-cigarette emissions. Environmental Science & Technology, 51(18), 10806–10813. https://doi.org/10.1021/acs.est.7b02205
- Klein, S. J. (2014). Butyraldehyde. In Encyclopedia of toxicology (Vol. 1) (pp. 595–596). Elsevier. https://doi.org/10.1016/B978-0-12-386454-3.00264-5
10.1016/B978-0-12-386454-3.00264-5 Google Scholar
- Knipp, R. J., Li, M., Fu, X. A., & Nantz, M. H. (2015). A versatile probe for chemoselective capture and analysis of carbonyl compounds in exhaled breath. Analytical Methods, 7, 6027–6033. https://doi.org/10.1039/C5AY01576F
- Korzun, T., Lazurko, M., Munhenzva, I., Barsanti, K. C., Huang, Y., Jensen, R. P., Escobedo, J. O., Luo, W., Peyton, D. H., & Strongin, R. M. (2018). E-cigarette airflow rate modulates toxicant profiles and can lead to concerning levels of solvent consumption. ACS Omega, 3, 30–36. https://doi.org/10.1021/acsomega.7b01521
- Kosmider, L., Jackson, A., Leigh, N., O'Conner, R., & Goniewicz, M. L. (2018). Circadian puffing behavior and topography among e-cigarette users. Tobacco Regulatory Science, 4(5), 41–49. https://doi.org/10.18001/TRS.4.5.4
- Kosmider, L., Kimber, C. F., Kurek, J., Corcoran, O., & Dawkins, L. E. (2018). Compensatory puffing with lower nicotine concentration e-liquids increases carbonyl exposure in e-cigarette aerosols. Nicotine & Tobacco Research, 20(8), 998–1003. https://doi.org/10.1093/ntr/ntx162
- Kosmider, L., Sobczak, A., Fik, M., Knysak, J., Zaciera, M., Kurek, J., & Goniewicz, M. L. (2014). Carbonyl compounds in electronic cigarette vapors: Effects of nicotine solvent and battery output voltage. Nicotine & Tobacco Research, 16(10), 1319–1326. https://doi.org/10.1093/ntr/ntu078
- Kramarow, E. A., & Elgaddal, N. (2023). Percentage distribution of cigarette smoking status among current adult e-cigarette users, by age group—National Health Interview Survey, United States, 2021. Morbidity and Mortality Weekly Report, 72(10), 270. https://doi.org/10.15585/mmwr.mm7210a7
- Krishnasamy, V. P., Hallowell, B. D., Ko, J. Y., Board, A., Hartnett, K. P., Salvatore, P. P., Danielson, M., Kite-Powell, A., Twentyman, E., Kim, L., Cyrus, A., Wallace, M., Melstrom, P., Haag, B., King, B. A., Briss, P., Jones, C. M., Pollack, L. A., Ellington, S., & Lung Injury Response Epidemiology/Surveillance Task Force. (2020). Update: characteristics of a nationwide outbreak of e-cigarette, or vaping, product use–associated lung injury—United States, August 2019–January 2020. Morbidity and Mortality Weekly Report, 69(3), 90–94. https://doi.org/10.15585/mmwr.mm6903e2
- Laestadius, L., & Wang, Y. (2018). Youth access to JUUL online: eBay sales of JUUL prior to and following FDA action. Tobacco Control, 28(6), 617–622. https://doi.org/10.1136/tobaccocontrol-2018-054499
- Laugesen, M. (2015). Nicotine and toxicant yield ratings of electronic cigarette brands in New Zealand. New Zealand Medical Journal, 128(1411), 77–82.
- Lee, M. H., Szulejko, J. E., & Kim, K. H. (2018). Determination of carbonyl compounds in electronic cigarette refill solutions and aerosols through liquid-phase dinitrophenyl hydrazine derivatization. Environmental Monitoring and Assessment, 190, 200. https://doi.org/10.1007/s10661-018-6553-2
- Lee, M. S., LeBouf, R. F., Son, Y. S., Koutrakis, P., & Christiani, D. C. (2017). Nicotine, aerosol particles, carbonyls and volatile organic compounds in tobacco- and menthol-flavored e-cigarettes. Environmental Health, 16, 42. https://doi.org/10.1186/s12940-017-0249-x
- Lee, P. N., Fry, J. S., Gilliland, S., Campbell, P. J., & Joyce, A. R. (2022). Estimating the reduction in US mortality if cigarettes were largely replaced by e-cigarettes. Archives of Toxicology, 96, 167–176. https://doi.org/10.1007/s00204-021-03180-3
- Leone, A., Nigro, C., Nicolò, A., Prevenzano, I., Formisano, P., Beguinot, F., & Miele, C. (2021). The dual-role of methylglyoxal in tumor progression—Novel therapeutic approaches. Frontiers in Oncology, 11, 645686. https://doi.org/10.3389/fonc.2021.645686
- Levy, D. T., Borland, R., Lindblom, E. N., Goniewicz, M. L., Meza, R., Holford, T. R., Yuan, Z., Luo, Y., O'Connor, R. J., Niaura, R., & Abrams, D. B. (2018). Potential deaths averted in USA by replacing cigarettes with e-cigarettes. Tobacco Control, 27(1), 18–25. https://doi.org/10.1136/tobaccocontrol-2017-053759
- Li, M., Biswas, S., Nantz, M. H., Higashi, R. M., & Fu, X. A. (2012). Preconcentration and analysis of trace carbonyl compounds. Analytical Chemistry, 84(3), 1288–1293. https://doi.org/10.1021/ac2021757
- Li, Y., Burns, A. E., Tran, L. N., Abellar, K. A., Poindexter, M., Li, X., Madl, A. K., Pinkerton, K. E., & Nguyen, T. B. (2021). Impact of e-liquid composition, coil temperature, and puff topography on the aerosol chemistry of electronic cigarettes. Chemical Research in Toxicology, 34(6), 1640–1654. https://doi.org/10.1021/acs.chemrestox.1c00070
- Lippi, G., & Favaloro, E. J. (2019). An update on biological and clinical associations between e-cigarettes and myocardial infarction. Seminars in Thrombosis and Hemostasis, 46(4), 512–514. https://doi.org/10.1055/s-0039-3402451
- Luttrell, W. E., & Tyler, J. W. (2011). Butyraldehyde. Journal of Chemical Health and Safety, 18(2), 27–28. https://doi.org/10.1016/j.jchas.2011.01.013
10.1016/j.jchas.2011.01.013 Google Scholar
- Lv, S., Gong, D., Ding, Y., Lin, Y., Wang, H., Ding, H., Wu, G., He, C., Zhou, L., Liu, S., Ristovski, Z., Chen, D., Shao, M., Zhang, Y., & Wang, B. (2019). Elevated levels of glyoxal and methylglyoxal at a remote mountain site in southern China: Prompt in-situ formation combined with strong regional transport. Sci Total Environ, 672, 869–882. https://doi.org/10.1016/j.scitotenv.2019.04.020
- Maasen, K., Scheijen, J. L. J. M., Opperhuizen, A., Stehouwer, C. D. A., Van Greevenbroek, M. M., & Schalkwijk, C. G. (2021). Quantification of dicarbonyl compounds in commonly consumed foods and drinks; presentation of a food composition database for dicarbonyls. Food Chemistry, 339, 128063. https://doi.org/10.1016/j.foodchem.2020.128063
- Mallock, N., Trieu, H. L., Macziol, M., Malke, S., Katz, A., Laux, P., Henkler-Stephani, F., Hahn, J., Hutzler, C., & Luch, A. (2020). Trendy e-cigarettes enter Europe: Chemical characterization of JUUL pods and its aerosols. Archives of Toxicology, 94(6), 1985–1994. https://doi.org/10.1007/s00204-020-02716-3
- Margham, J., McAdam, K., Cunningham, A., Porter, A., Fiebelkorn, S., Mariner, D., Digard, H., & Proctor, C. (2021). The chemical complexity of e-cigarette aerosols compared with the smoke from a tobacco burning cigarette. Frontiers in Chemistry, 9, 743060. https://doi.org/10.3389/fchem.2021.743060
- Margham, J., McAdam, K., Forster, M., Liu, C., Wright, C., Mariner, D., & Proctor, C. (2016). Chemical composition of aerosol from an e-cigarette: A quantitative comparison with cigarette smoke. Chemical Research in Toxicology, 29(10), 1662–1678. https://doi.org/10.1021/acs.chemrestox.6b00188
- Marques, P., Piqueras, L., & Sanz, M. J. (2021). An updated overview of e-cigarette impact on human health. Respiratory Research, 22, 151. https://doi.org/10.1186/s12931-021-01737-5
- Mauderly, J. L. (1986). Respiration of F344 rats in nose-only inhalation exposure tubes. Journal of Applied Toxicology, 6(1), 25–30. https://doi.org/10.1002/jat.2550060106
- McAdam, K., Waters, G., Moldoveanu, A., Margham, J., Cunningham, A., Vas, C., Porter, A., & Digard, H. (2021). Diacetyl and other ketones in e-cigarette aerosols: Some important sources and contributing factors. Frontiers in Chemistry., 9, 742538. https://doi.org/10.3389/fchem.2021.742538
- McGuigan, M., Chapman, G., Lewis, E., Watson, C. H., Blount, B. C., & Valentin-Blasini, L. (2022). High-performance liquid chromatography-tandem mass spectrometry analysis of carbonyl emissions from e-cigarette, or vaping. Products. ACS Omega, 7(9), 7655–7661. https://doi.org/10.1021/acsomega.1c06321
- Melvin, M. S., Avery, K. C., Ballentine, R. M., Flora, J. W., Gardner, W., Karles, G. D., Pithawalla, Y. B., Smith, D. C., Ehman, K. D., & Wagner, K. A. (2020). Formation of diacetyl and other α-dicarbonyl compounds during the generation of e-vapor product aerosols. ACS Omega, 5(28), 17565–17575. https://doi.org/10.1021/acsomega.0c02018
- Migliore, L., Barale, R., Bosco, E., Giorgelli, F., Minunni, M., Scarpato, R., & Loprieno, N. (1990). Genotoxicity of methylglyoxal: Cytogenetic damage in human lymphocytes in vitro and in intestinal cells of mice. Carcinogenesis, 11(9), 1503–1507. https://doi.org/10.1093/carcin/11.9.1503
- Moldoveanu, S. C., Hudson, A. G., & Harrison, A. (2017). The determination of diacetyl and acetylpropionyl in aerosols from electronic smoking devices using gas chromatography triple quad mass spectrometry. Beiträge Zur Tabakforschung International, 27(7), 145–153. https://doi.org/10.1515/cttr-2017-0015
- Nagao, M., Fujita, Y., & Sugimura, T. (1986, September 17-19, 1984). Methylglyoxal in beverages and foods: Its mutagenicity and carcinogenicity. In B. Singer & H. Bartsch (Eds.), The Role of Cyclic Nucleic Acid Adducts in Carcinogenesis and Mutagenesis. International Agency for Research on Cancer.
- National Academies of Sciences, Engineering, and Medicine (NASEM). (2018). Public health consequences of e-cigarettes. The National Academies Press. https://doi.org/10.17226/24952
- National Institute for Occupational Safety & Health (NIOSH). (1982). Registry of the toxic effects of chemical substances (RTECS).
- National Toxicology Program (NTP). (1999). NTP technical report on the toxicology and carcinogenesis studies of isobutyraldehyde (CAS No. 78/84–2) in F344/N rats and B6c3F1 mice (inhalation studies).
- Nicol, J., Fraser, R., Walker, L., Liu, C., Murphy, J., & Proctor, C. J. (2020). Comprehensive chemical characterization of the aerosol emissions of a vaping product based on a new technology. Chemical Research in Toxicology, 33(3), 789–799. https://doi.org/10.1021/acs.chemrestox.9b00442
- Noel, A., & Ghosh, A. (2022). Carbonyl profiles of electronic nicotine delivery system (ENDS) aerosols reflect both the chemical composition and the numbers of e-liquid ingredients-focus on the in vitro toxicity of strawberry and vanilla flavors. International Journal of Environmental Research and Public Health, 19, 1–18. https://doi.org/10.3390/ijerph192416774
- Occupational Alliance for Risk Science (OARS). (2014). Workplace environmental exposure level: Butyraldehyde.
- OEHHA. (1992). Expedited cancer potency values and proposed regulatory levels for certain proposition 65 carcinogens.
- Office of the Surgeon General. (2020). Smoking cessation: a report of the surgeon general. P. H. S. U.S. Department of Health and Human Services, Office of the Surgeon General. https://www.cdc.gov/tobacco/data_statistics/sgr/2020-smoking-cessation/index.html#full-report, https://doi.org/10.1001/jama.2020.6647
10.1001/jama.2020.6647 Google Scholar
- Ogunwale, M. A., Li, M., Ramakrishnam Raju, M. V., Chen, Y., Nantz, M. H., Conklin, D. J., & Fu, X.-A. (2017). Aldehyde detection in electronic cigarette aerosols. ACS Omega, 2(3), 1207–1214. https://doi.org/10.1021/acsomega.6b00489
- Omaiye, E. E., Cordova, I., David, B., & Talbot, P. (2017). Counterfeit electronic cigarette products with mislabeled nicotine concentrations. Tobacco Regulatory Science, 3(3), 347–357. https://doi.org/10.18001/TRS.3.3.10
- Omenn, G. S. (1997). Accomplishments of the Commission on Risk Assessment/Risk Management United States Environmental Protection Agency (EPA).
- Onoda, A., Asanoma, M., & Nukaya, H. (2016). Identification of methylglyoxal as a major mutagen in wood and bamboo pyroligneous acids. Bioscience, Biotechnology, and Biochemistry, 80(5), 833–839. https://doi.org/10.1080/09168451.2015.1136880
- Palmer, L. A., May, W. J., deRonde, K., Brown-Steinke, K., Gaston, B., & Lewis, S. J. (2013). Hypoxia-induced ventilatory responses in conscious mice: Gender differences in ventilatory roll-off and facilitation. Respiratory Physiology and Neurobiology, 185(3), 497–505. https://doi.org/10.1016/j.resp.2012.11.010
- Pankow, J. F., Kim, K., McWhirter, K. J., Luo, W., Escobedo, J. O., Strongin, R. M., Duell, A. K., & Peyton, D. H. (2017). Benzene formation in electronic cigarettes. PLoS ONE, 12(3), e0173055. https://doi.org/10.1371/journal.pone.0173055
- Papoušek, R., Pataj, Z., Nováková, P., Lemr, K., & Barták, P. (2014). Determination of acrylamide and acrolein in smoke from tobacco and e-cigarettes. Chromatographia, 77, 1145–1151. https://doi.org/10.1007/s10337-014-2729-2
- Paul-Samojedny, M., Łasut, B., Pudełko, A., Fila-Daniłow, A., Kowalczyk, M., Suchanek-Raif, R., Zieliński, M., Borkowska, P., & Kowalski, J. (2016). Methylglyoxal (MGO) inhibits proliferation and induces cell death of human glioblastoma multiforme T98G and U87MG cells. Biomedicine & Pharmacotherapy, 80, 236–243. https://doi.org/10.1016/j.biopha.2016.03.021
- Pellegrino, R., Tinghino, B., Mangiaracina, G., Marani, A., Vitali, M., Protano, C., Osborn, J., & Cattaruzza, M. (2012). Electronic cigarettes: An evaluation of exposure to chemicals and fine particulate matter (PM). Annali di Igiene, 24(4), 279–288.
- Peters, M. A., Hudson, P. M., & Jurgelske, W. Jr. (1978). The acute toxicity of methylglyoxal in rats: The influence of age, sex, and pregnancy. Ecotoxicology and Environmental Safety, 2(3–4), 369–374. https://doi.org/10.1016/s0147-6513(78)80009-8
- Pinto, M. I., Thissen, J., Hermes, N., Cunningham, A., Digard, H., & Murphy, J. (2022). Chemical characterisation of the vapour emitted by an e-cigarette using a ceramic wick-based technology. Scientific Reports, 12, 16497. https://doi.org/10.1038/s41598-022-19761-w
- Pluym, N., Scherer, G., Edmiston, J. S., Jin, X. C., Sarkar, M., & Scherer, M. (2022). Assessment of the exposure to NNN in the plasma of smokeless tobacco users. Chemical Research in Toxicology, 35, 663–669. https://doi.org/10.1021/acs.chemrestox.1c00431
- Possanzini, M., Tagliacozzo, G., & Cecinato, A. (2007). Ambient levels and sources of lower carbonyls at Montelibretti, Rome (Italy). Water, Air, and Soil Pollution, 183, 447–454. https://doi.org/10.1007/s11270-007-9393-1
- Public Health England. (2021). Vaping in England: An evidence update including vaping for smoking cessation, February 2021. 247.
- Qu, Y., Kim, K. H., & Szulejko, J. E. (2018). The effect of flavor content in e-liquids on e-cigarette emissions of carbonyl compounds. Environmental Research, 166, 324–333. https://doi.org/10.1016/j.envres.2018.06.013
- Quindry, J. C., Ballmann, C. G., Epstein, E. E., & Selsby, J. T. (2016). Plethysmography measurements of respiratory function in conscious unrestrained mice. The Journal of Physiological Sciences, 66(2), 157–164. https://doi.org/10.1007/s12576-015-0408-1
- Ranpara, A., Stefaniak, A. B., Fernandez, E., Bowers, L. N., Arnold, E. D., & LeBouf, R. F. (2023). Influence of puff topographies on e-liquid heating temperature, emission characteristics and modeled lung deposition of Puff Bar™. Aerosol Science and Technology, 57(5), 450–466. https://doi.org/10.1080/02786826.2023.2190786
- Rao, G. N., Haseman, J. K., Grumbein, S., Crawford, D. D., & Eustis, S. L. (1990). Growth, body weight, survival, and tumor trends in F344/N rats during an eleven-year period*. Toxicologic Pathology, 18(1), 61–70. https://doi.org/10.1177/019262339001800109
- Rao, P., Liu, J., & Springer, M. L. (2020). JUUL and combusted cigarettes comparably impair endothelial function. Tobacco Regulatory Science, 6(1), 30–37. https://doi.org/10.18001/TRS.6.1.4
- Rawlinson, C., Martin, S., Frosina, J., & Wright, C. (2017). Chemical characterisation of aerosols emitted by electronic cigarettes using thermal desorption-gas chromatography-time of flight mass spectrometry. Journal of Chromatography A, 1497, 144–154. https://doi.org/10.1016/j.chroma.2017.02.050
- Ray, M., & Ray, S. (1998). Methylglyoxal: From a putative intermediate of glucose breakdown to its role inunderstanding that excessive ATP formation in cells may lead to malignancy. Current Science, 75(2), 103–113. https://www.jstor.org/stable/24100533
- Reilly, S. M., Bitzer, Z. T., Goel, R., Trushin, N., & Richie, J. P. (2019). Free radical, carbonyl, and nicotine levels produced by Juul electronic cigarettes. Nicotine & Tobacco Research, 21(9), 1274–1278. https://doi.org/10.1093/ntr/nty221
- Rodgman, A., & Perfetti, T. A. (2013). The chemical components of tobacco and tobacco smoke ( 2nd ed.). CRC Press.
10.1201/b13973 Google Scholar
- Roy, A., Sarker, S., Upadhyay, P., Pal, A., Adhikary, A., Jana, K., & Ray, M. (2018). Methylglyoxal at metronomic doses sensitizes breast cancer cells to doxorubicin and cisplatin causing synergistic induction of programmed cell death and inhibition of stemness. Biochemical Pharmacology, 156, 322–339. https://doi.org/10.1016/j.bcp.2018.08.041
- Rudd, K., Stevenson, M., Wieczorek, R., Pani, J., Trelles-Sticken, E., Dethloff, O., Czekala, L., Simms, L., Buchanan, F., O'Connell, G., & Walele, T. (2020). Chemical composition and in vitro toxicity profile of a pod-based e-cigarette aerosol compared to cigarette smoke. Applied in Vitro Toxicology, 6(1), 11–41. https://doi.org/10.1089/aivt.2019.0015
- Sala, C., Medana, C., Pellegrino, R., Aigotti, R., Bello, F. D., Bianchi, G., & Davoli, E. (2017). Dynamic measurement of newly formed carbonyl compounds in vapors from electronic cigarettes. European Journal of Mass Spectrometry, 23(2), 64–69. https://doi.org/10.1177/1469066717699078
- Schauer, G. L., Malarcher, A. M., & Asman, K. J. (2015). Trends in the average age of quitting among U.S. adult cigarette smokers. American Journal of Preventive Medicine, 49(6), 939–944. https://doi.org/10.1016/j.amepre.2015.06.028
- Seiler-Ramadas, R., Sandner, I., Haider, S., Grabovac, I., & Dorner, T. E. (2021). Health effects of electronic cigarette (e-cigarette) use on organ systems and its implications for public health. Wiener Klinische Wochenschrift, 133, 1020–1027. https://doi.org/10.1007/s00508-020-01711-z
- Shah, N. H., Noe, M. R., Agnew-Heard, K. A., Pithawalla, Y. B., Gardner, W. P., Chakraborty, S., McCutcheon, N., Grisevich, H., Hurst, T. J., Morton, M. J., Melvin, M. S., & Miller, J. H. IV (2021). Non-targeted analysis using gas chromatography-mass spectrometry for evaluation of chemical composition of e-vapor products [original research]. Frontiers in Chemistry, 9, 742854. https://doi.org/10.3389/fchem.2021.742854
- Shein, M., & Jeschke, G. (2019). Comparison of free radical levels in the aerosol from conventional cigarettes, electronic cigarettes, and heat-not-burn tobacco products. Chemical Research in Toxicology, 32(6), 1289–1298. https://doi.org/10.1021/acs.chemrestox.9b00085
- Sim, V. M., & Pattle, R. E. (1957). Effect of possible smog irritants on human subjects. Journal of the American Medical Association, 165(15), 1908–1913. https://doi.org/10.1001/jama.1957.02980330010003
- Singh, S., Windle, S. B., Filion, K. B., Thombs, B. D., O'Loughlin, J. L., Grad, R., & Eisenberg, M. J. (2000). E-cigarettes and youth: Patterns of use, potential harms, and recommendations. Preventive Medicine, 133, 106009. https://doi.org/10.1016/j.ypmed.2020.106009
10.1016/j.ypmed.2020.106009 Google Scholar
- Sleiman, M., Logue, J. M., Montesinos, V. N., Russell, M. L., Litter, M. I., Gundel, L. A., & Destaillats, H. (2016). Emissions from electronic cigarettes: Key parameters affecting the release of harmful chemicals. Environmental Science & Technology, 50(17), 9644–9651. https://doi.org/10.1021/acs.est.6b01741
- Sobieski, E., Yingst, J., & Foulds, J. (2022). Quitting electronic cigarettes: Factors associated with quitting and quit attempts in long-term users. Addictive Behaviors, 127, 107220. https://doi.org/10.1016/j.addbeh.2021.107220
- Son, Y., Bhattarai, C., Samburova, V., & Khlystov, A. (2020). Carbonyls and carbon monoxide emissions from electronic cigarettes affected by device type and use patterns. International Journal of Environmental Research and Public Health, 17, 2767. https://doi.org/10.3390/ijerph17082767
- Son, Y., Mishin, V., Laskin, J. D., Mainelis, G., Wackowski, O. A., Delnevo, C., Schwander, S., Khlystov, A., Samburova, V., & Meng, Q. (2019). Hydroxyl radicals in e-cigarette vapor and e-vapor oxidative potentials under different vaping patterns. Chemical Research in Toxicology, 32(6), 1087–1095. https://doi.org/10.1021/acs.chemrestox.8b00400
- Soule, E. K., Sousan, S., Streuber, D., Fresquez, S. E., Mooring, R., Salman, R., Talih, S., & Pender, J. (2022). Increased JUUL emissions from initial puffs after removing and reinserting pod. Chemical Research in Toxicology, 35(3), 383–386. https://doi.org/10.1021/acs.chemrestox.2c00017
- Soulet, S., & Sussman, R. A. (2022). Critical review of the recent literature on organic byproducts in e-cigarette aerosol emissions. Toxics, 10, 714. https://doi.org/10.3390/toxics10120714
- Soussy, S., El-Hellani, A., Baalbaki, R., Salman, R., Shihadeh, A., & Saliba, N. A. (2016). Detection of 5-hydroxymethylfurfural and furfural in the aerosol of electronic cigarettes. Tobacco Control, 25, ii88–ii93. https://doi.org/10.1136/tobaccocontrol-2016-053220
- St Helen, G., Ross, K. C., Dempsey, D. A., Havel, C. M., Jacob, P. 3rd, & Benowitz, N. L. (2016). Nicotine delivery and vaping behavior during ad libitum e-cigarette access. Tobacco Regulatory Science, 2(4), 363–376. https://doi.org/10.18001/TRS.2.4.8
- St. Helen, G., & Eaton, D. L. (2018). Public health consequences of e-cigarette use. JAMA Internal Medicine, 178(7), 984–986. https://doi.org/10.1001/jamainternmed.2018.1600
- Stephens, W. E., de Falco, B., & Fiore, A. (2019). A strategy for efficiently collecting aerosol condensate using silica fibers: Application to carbonyl emissions from e-cigarettes. Chemical Research in Toxicology, 32(10), 2053–2062. https://doi.org/10.1021/acs.chemrestox.9b00214
- Strohl, K. P., Thomas, A. J., St Jean, P., Schlenker, E. H., Koletsky, R. J., & Schork, N. J. (1997). Ventilation and metabolism among rat strains. Journal of Applied Physiology, 82(1), 317–323. https://doi.org/10.1152/jappl.1997.82.1.317
- Taconic Biosciences. (2024). Black 6 (B6NTac) growth chart. Retrieved July 10, 2024 from https://www.taconic.com/products/mouse-rat/standard-strains-and-stocks/black-6-b6ntac#tabsmobiledropdown-155d2d1ed8-item-dd16099164-tab
- Takahashi, M., Okamiya, H., Furukawa, F., Toyoda, K., Sato, H., Imaida, K., & Hayashi, Y. (1989). Effects of glyoxal and methylglyoxal administration on gastric carcinogenesis in Wistar rats after initiation with N-methyl-N'-nitro-N-nitrosoguanidine. Carcinogenesis, 10(10), 1925–1927. https://doi.org/10.1093/carcin/10.10.1925
- Talih, S., Balhas, Z., Salman, R., Karaoghlanian, N., & Shihadeh, A. (2016). “Direct Dripping”: A high-temperature, high-formaldehyde emission electronic cigarette use method. Nicotine & Tobacco Research, 18(4), 453–459. https://doi.org/10.1093/ntr/ntv080
- Talih, S., Karaoghlanian, N., Salman, R., Fallah, S., Helal, A., El-Hage, R., Saliba, N., Breland, A., Eissenberg, T., & Shihadeh, A. (2023). Comparison of design characteristics and toxicant emissions from Vuse Solo and Alto electronic nicotine delivery systems. Tobacco Control, 057711. https://doi.org/10.1136/tc-2022-057711
- Talih, S., Karaoghlanian, N., Salman, R., Hilal, E., Patev, A., Bell, A., Fallah, S., El-Hage, R., Saliba, N. A., Cobb, C. O., Barnes, A., & Shihadeh, A. (2023). Effects of aftermarket electronic cigarette pods on device power output and nicotine, carbonyl, and ROS emissions. Chemical Research in Toxicology, 36(12), 1930–1937. https://doi.org/10.1021/acs.chemrestox.3c00213
- Talih, S., Salman, R., El-Hage, R., Karam, E., Karaoghlanian, N., El-Hellani, A., Saliba, N., & Shihadeh, A. (2019). Characteristics and toxicant emissions of JUUL electronic cigarettes. Tobacco Control, 28(6), 678–680. https://doi.org/10.1136/tobaccocontrol-2018-054616
- Talih, S., Salman, R., El-Hage, R., Karam, E., Salam, S., Karaoghlanian, N., El-Hellani, A., Saliba, N., & Shihadeh, A. (2020). A comparison of the electrical characteristics, liquid composition, and toxicant emissions of JUUL USA and JUUL UK e-cigarettes. Scientific Reports, 10(1), 7322. https://doi.org/10.1038/s41598-020-64414-5
- Talih, S., Salman, R., Karaoglhanian, N., El-Hellani, A., & Shihadeh, A. (2023). Carbonyl emissions and heating temperatures across 75 nominally identical electronic nicotine delivery system products: Do manufacturing variations drive pulmonary toxicant exposure? Chemical Research in Toxicology, 36(3), 342–346. https://doi.org/10.1021/acs.chemrestox.2c00391
- Talih, S., Salman, R., Soule, E., El-Hage, R., Karam, E., Karaoghlanian, N., El-Hellani, A., Saliba, N., & Shihadeh, A. (2022). Electrical features, liquid composition and toxicant emissions from ‘pod-mod’-like disposable electronic cigarettes. Tobacco Control, 31(5), 667–670. https://doi.org/10.1136/tobaccocontrol-2020-056362
- Talih, S., Salmon, R., Karaoghlanian, N., El-Hellani, A., Eissenberg, T., & Shihadeh, A. (2017). “Juice Monsters”: Sub-ohm vaping and toxic volatile aldehyde emissions. Chemical Research in Toxicology, 30, 1791–1793. https://doi.org/10.1021/acs.chemrestox.7b00212
- Tankersley, C. G., Fitzgerald, R. S., & Kleeberger, S. R. (1994). Differential control of ventilation among inbred strains of mice. The American Journal of Physiology, 267(5), R1371–R1377. https://doi.org/10.1152/ajpregu.1994.267.5.R1371
- Taylor, E., Simonavicius, E., McNeill, A., Brose, L. S., East, K., Marczylo, T., & Robson, D. (2023). Exposure to tobacco-specific nitrosamines among people who vape, smoke, or do neither: A systematic review and meta-analysis. Nicotine & Tobacco Research, 26(3), 257–269. https://doi.org/10.1093/ntr/ntad156
- Tayyarah, R., & Long, G. A. (2014). Comparison of select analytes in aerosol from e-cigarettes with smoke from conventional cigarettes and with ambient air. Regulatory Toxicology and Pharmacology, 70(3), 704–710. https://doi.org/10.1016/j.yrtph.2014.10.010
- Tehrani, M. W., Newmeyer, M. N., Rule, A. M., & Prasse, C. (2021). Characterizing the chemical landscape in commercial e-cigarette liquids and aerosols by liquid chromatography−high-resolution mass spectrometry. Chemical Research in Toxicology, 34(10), 2216–2226. https://doi.org/10.1021/acs.chemrestox.1c00253
- Tran, L. N., Chiu, E. Y., Hunsaker, H. C., Wu, K., Poulin, B. A., Madl, A. K., Pinkerton, K. E., & Nguyen, T. B. (2023). Carbonyls and aerosol mass generation from vaping nicotine salt solutions using fourth-and third-generation e-cigarette devices: Effects of coil resistance, coil age, and coil metal material. Chemical Research in Toxicology, 36(10), 1599–1610. https://doi.org/10.1021/acs.chemrestox.3c00172
- US Food and Drug Administration (FDA). Harmful and potentially harmful constituents in tobacco products and tobacco smoke: Established list; proposed additions; request for comments, 38032–38035, 84 (2019).
- Uchiyama, S., Noguchi, M., Sato, A., Ishitsuka, M., Inaba, Y., & Kunugita, N. (2020). Determination of thermal decomposition products generated from e-cigarettes. Chemical Research in Toxicology, 33(2), 576–583. https://doi.org/10.1021/acs.chemrestox.9b00410
- Uchiyama, S., Ohta, K., Inaba, Y., & Kunugita, N. (2013). Determination of carbonyl compounds generated from the e-cigarette using coupled silica cartridges impregnated with hydroquinone and 2,4-dinitrophenylhydrazine, followed by high-performance liquid chromatography. Analytical Sciences, 29(12), 1219–1222. https://doi.org/10.2116/analsci.29.1219
- Uchiyama, S., Senoo, Y., Hayashida, H., Inaba, Y., Nakagome, H., & Kunugita, N. (2016). Determination of chemical compounds generated from second-generation e-cigarettes using a sorbent cartridge followed by a two-step elution method. Analytical Sciences, 32(5), 549–555. https://doi.org/10.2116/analsci.32.549
- US Environmental Protection Agency (EPA). (1988). Butyraldehyde vapor inhalation by dogs and rats for 14 and 23 weeks respectively and a 12 week vapor inhalation study in rats. (FYI-OTS-1088-0647D (NTIS/OTS-0000647): 102).
- US Environmental Protection Agency (EPA). (1989a). Acute toxicity, primary & eye irritation studies in rabbits, a dermal sensitization study in guinea pigs & an acute inhalation toxicity study of C-243 in rat w-attachments & letter. (EPA/OTS 0516658).
- US Environmental Protection Agency (EPA). (1989b). Health effects assessment for butyraldehyde at the nitro plant (final report) with attachment and cover letter. (EPA/OTS 0521603).
- US Environmental Protection Agency (EPA). (1992a). Butyraldehyde: 9-Day repeated vapor inhalation toxicity, vapor inhalation by dogs and rats for 12 and 13 weeks, respectively and a 12-week vapor inhalation study in rats. (EPA/OTS Doc #86 890000097). Washington, D.C.
- US Environmental Protection Agency (EPA). (1992b). EPA's approach for assessing the risks associated with chronic exposure to carcinogens: Background document 2. Washington, D.C: United States Environmental Protection Agency (EPA). https://www.epa.gov/iris/epas-approach-assessing-risks-associated-chronic-exposure-carcinogens
- US Environmental Protection Agency (EPA). (2005). Guidelines for carcinogen risk assessment: EPA/630/P-03/001F. Washington, D.C: United States Environmental Protection Agency (EPA).
- US Environmental Protection Agency (EPA). (2012). Quantitative Risk Assessment Calculations. In Sustainable futures/P2 framework manual 2012 EPA-748-B12-001 (pp. 1–11). U.S. Environmental Protection Agency.
- Upadhyaya, P., Zimmerman, C. L., & Hecht, S. S. (2002). Metabolism and pharmacokinetics of N'-nitrosonornicotine in the patas monkey. Drug Metabolism and Disposition, 30(10), 1115–1122. https://doi.org/10.1124/dmd.30.10.1115
- van Andel, I., Sleijffers, A., Schenk, E., Rambali, B., Wolterink, G., Vleeming, W., & van Amsterdam, J. G. C. (2006). Adverse health effects of cigarette smoke: aldehydes crotonaldehyde, butyraldehyde, hexanal and malonaldehyde: RIVM report 340630002. 1-65.
- Virgili, F., Nenna, R., David, S. B., Mancino, E., Mattia, G. D., Matera, L., Petrarca, L., & Midulla, F. (2022). E-cigarettes and youth: An unresolved public health concern. Italian Journal of Pediatrics, 48(97), 97. https://doi.org/10.1186/s13052-022-01286-7
- Vreeke, S., Korzun, T., Luo, W., Jensen, R. P., Peyton, D. H., & Strongin, R. M. (2018). Dihydroxyacetone levels in electronic cigarettes: Wick temperature and toxin formation. Aerosol Science and Technology, 52(4), 370–376. https://doi.org/10.1080/02786826.2018.1424316
- Wagner, K. A., Flora, J. W., Melvin, M. S., Avery, K. C., Ballentine, R. M., Brown, A. P., & McKinney, W. J. (2018). An evaluation of electronic cigarette formulations and aerosols for harmful and potentially harmful constituents (HPHCs) typically derived from combustion. Regulatory Toxicology and Pharmacology, 95, 153–160. https://doi.org/10.1016/j.yrtph.2018.03.012
- Wang, R. J., Bhadriraju, S., & Glantz, S. A. (2021). E-cigarette use and adult cigarette smoking cessation: A meta-analysis. American Journal of Public Health, 111(2), 230–246. https://doi.org/10.2105/ajph.2020.305999
- Ward, A. M., Yaman, R., & Ebbert, J. O. (2020). Electronic nicotine delivery system design and aerosol toxicants: A systematic review. PLoS ONE, 15(6), e0234189. https://doi.org/10.1371/journal.pone.0234189
- Warner, K. E., Benowitz, N. L., McNeill, A., & Rigotti, N. A. (2023). Nicotine e-cigarettes as a tool for smoking cessation. Nature Medicine, 29, 520–524. https://doi.org/10.1038/s41591-022-02201-7
- Warner, K. E., & Mendez, D. (2019). E-cigarettes: Comparing the possible risks of increasing smoking initiation with the potential benefits of increasing smoking cessation. Nicotine & Tobacco Research, 21(1), 41–47. https://doi.org/10.1093/ntr/nty062
- Werner, A. K., Koumans, E. H., Chatham-Stephens, K., Salvatore, P. P., Armatas, C., Byers, P., Clark, C. R., Ghinai, I., Holzbauer, S. M., Navarette, K. A., Danielson, M. L., Ellington, S., Moritz, E. D., Petersen, E. E., Kiernan, E. A., Baldwin, G. T., Briss, P., Jones, C. M., King, B. A., … Reagan-Steiner, S. (2020). Hospitalizations and deaths associated with EVALI. New England Journal of Medicine, 382(17), 1589–1598. https://doi.org/10.1056/NEJMoa1915314
- Winnicka, L., & Shenoy, M. A. (2020). EVALI and the pulmonary toxicity of electronic cigarettes: A review. Journal of General Internal Medicine, 35(7), 2130–2135. https://doi.org/10.1007/s11606-020-05813-2
- World Health Organization (WHO). (1999). Principles for the assessment of risks to human health from exposure to chemicals. Environmental health criteria 210, International Programme on Chemical Safety.
- World Health Organization (WHO). (2006). Evaluation of certain food contaminants (sixty-fourth report of the joint FAO/WHO Expert Committee on Food Additives). WHO Technical Report Series, 930.
- Yan, B., Zagorevski, D., Ilievski, V., Kleiman, N. J., Re, D. B., Navas-Acien, A., & Hilpert, M. (2021). Identification of newly formed toxic chemicals in e-cigarette aerosols with Orbitrap mass spectrometry and implications on e-cigarette control. European Journal of Mass Spectrometry, 27(2–4), 141–148. https://doi.org/10.1177/14690667211040207
- Zhao, D., Navas-Acien, A., Ilievski, V., Slavkovich, V., Olmedo, P., Adria-Mora, B., Domingo-Relloso, A., Aherrera, A., Kleiman, N. J., Rule, A. M., & Hilpert, M. (2019). Metal concentrations in electronic cigarette aerosol: Effect of open-system and closed-system devices and power settings. Environmental Research, 174, 125–134. https://doi.org/10.1016/j.envres.2019.04.003
- Zhao, J., Nelson, J., Dada, O., Pyrgiotakis, G., Kavouras, I. G., & Demokritou, P. (2018). Assessing electronic cigarette emissions: Linking physico-chemical properties to product brand, e-liquid flavoring additives, operational voltage and user puffing patterns. Inhalation Toxicology, 30(2), 78–88. https://doi.org/10.1080/08958378.2018.1450462
- Zhao, T., Shu, S., Guo, Q., & Zhu, Y. (2016). Effects of design parameters and puff topography on heating coil temperature and mainstream aerosols in electronic cigarettes. Atmospheric Environment, 134, 61–69. https://doi.org/10.1016/j.atmosenv.2016.03.027
- Zheng, J., Guo, H., Ou, J., Liu, P., Huang, C., Wang, M., Simal-Gandara, J., Battino, M., Jafari, S. M., Zou, L., Ou, S., & Xiao, J. (2021). Benefits, deleterious effects and mitigation of methylglyoxal in foods: A critical review. Trends in Food Science & Technology, 107, 201–212. https://doi.org/10.1016/j.tifs.2020.10.031