Emerging mycotoxins and reproductive effects in animals: A short review
Ilaria Chiminelli
Department of Environmental Science and Policy (ESP), University of Milan, Milan, Italy
Search for more papers by this authorCorresponding Author
Leon J. Spicer
Department of Animal and Food Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
Correspondence
Leon J. Spicer, Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA.
Email: [email protected]
Search for more papers by this authorExcel R. S. Maylem
Department of Animal and Food Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
Search for more papers by this authorFrancesca Caloni
Department of Environmental Science and Policy (ESP), University of Milan, Milan, Italy
Search for more papers by this authorIlaria Chiminelli
Department of Environmental Science and Policy (ESP), University of Milan, Milan, Italy
Search for more papers by this authorCorresponding Author
Leon J. Spicer
Department of Animal and Food Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
Correspondence
Leon J. Spicer, Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA.
Email: [email protected]
Search for more papers by this authorExcel R. S. Maylem
Department of Animal and Food Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
Search for more papers by this authorFrancesca Caloni
Department of Environmental Science and Policy (ESP), University of Milan, Milan, Italy
Search for more papers by this authorAbstract
Emerging Fusarium mycotoxins beauvericin (BEA), enniatins (ENNs), and moniliformin (MON) are gaining increasing interest due to their wide presence especially in cereals and grain-based products. In vitro and in vivo studies indicate that Fusarium mycotoxins can be implicated in reproductive disorders in animals. Of these mycotoxins, BEA may affect reproductive functions, impairing the development of oocytes in pigs and sheep. Studies show dramatic inhibitory effects of BEA and ENNA on bovine granulosa cell steroidogenesis. ENNs also inhibit boar sperm motility and cause detrimental effects on embryos in mice and pigs. Although little data are reported on reproductive effects of MON, in vitro studies show inhibitory effects of MON on Chinese hamster ovary cells. The present review aims to summarize the reproductive toxicological effects of emerging Fusarium mycotoxins BEA, ENNs, and MON on embryo development, ovarian function, and testicular function of animals. In vitro and in vivo toxicological data are reported although additional studies are needed for proper risk assessment.
CONFLICT OF INTEREST
The authors did not report any conflict of interest.
Open Research
DATA AVAILABILITY STATEMENT
Data sharing are not applicable to this article as no datasets were generated or analyzed during the current study.
REFERENCES
- Albonico, M., Schutz, F. L., Caloni, F., Cortinovis, C., & Spicer, L. J. (2017). In vitro effects of the Fusarium mycotoxins fumonisin B1 and beauvericin on bovine granulosa cell proliferation and steroid production. Toxicon, 128, 38–45. https://doi.org/10.1016/j.toxicon.2017.01.019
- Alshannaq, A., & Yu, J. H. (2017). Occurrence, toxicity, and analysis of major mycotoxins in food. International Journal of Environmental Research and Public Health, 14. https://doi.org/10.3390/ijerph14060632
- Behm, C., Föllmann, W., & Degen, G. H. (2012). Cytotoxic potency of mycotoxins in cultures of V79 lung fibroblast cells. Journal of Toxicology and Environmental Health, Part A, 75(19–20), 1226–1231. https://doi.org/10.1080/15287394.2012.709170
- Bertero, A., Moretti, A., Spicer, L. J., & Caloni, F. (2018). Fusarium molds and mycotoxins: Potential species-specific effects. Toxins (Basel), 10(6). https://doi.org/10.3390/toxins10060244
- Caloni, F., Fossati, P., Anadón, A., & Bertero, A. (2020). Beauvericin: The beauty and the beast. Environmental Toxicology and Pharmacology, 75, 103349. https://doi.org/10.1016/j.etap.2020.103349
- Caloni, F., Perego, M. C., Cortinovis, C., Bertero, A., & Spicer, L. J. (2018). In vitro effects of two environmental toxicants, beauvericin and glyphosate in Roundup, on cell proliferation and steroidogenesis using a novel bovine whole ovarian cell culture system. Journal of Veterinary Pharmacology and Therapeutcics, 41(Suppl. 1), 103–104. https://doi.org/10.1111/jvp.12649
- Cetin, Y., & Bullerman, L. B. (2005). Cytotoxicity of Fusarium mycotoxins to mammalian cell cultures as determined by the MTT bioassay. Food and Chemical Toxicology, 43(5), 755–764. https://doi.org/10.1016/j.fct.2005.01.016
- Chiminelli, I., Spicer, L. J., Maylem, E. R. S., & Caloni, F. (2022). In vitro effects of enniatin A on cell proliferation and steroid production by bovine granulosa cells from small and large follicles. 19th International Congress on Farm Animal Endocrinology. Bologna, Italy (Abstr.)
- Cortinovis, C., Pizzo, F., Spicer, L. J., & Caloni, F. (2013). Fusarium mycotoxins: Effects on reproductive function in domestic animals—A review. Theriogenology, 80, 557–564. https://doi.org/10.1016/j.theriogenology.2013.06.018
- Devreese, M., Broekaert, N., de Mil, T., Fraeyman, S., de Backer, P., & Croubels, S. (2014). Pilot toxicokinetic study and absolute oral bioavailability of the Fusarium mycotoxin enniatin B1 in pigs. Food and Chemical Toxicology, 63, 161–165. https://doi.org/10.1016/j.fct.2013.11.005
-
EFSA Panel on Contaminants in the Food Chain (CONTAM), Knutsen, H. K., Alexander, J., Barregård, L., Bignami, M., Brüschweiler, B., Ceccatelli, S., Cottrill, B., Dinovi, M., Grasl-Kraupp, B., Hogstrand, C., Hoogenboom, L. R., Nebbia, C. S., Oswald, I. P., Petersen, A., Rose, M., Roudot, A. C., Schwerdtle, T., Vleminckx, C., … Edler, L. (2018). Risks to human and animal health related to the presence of moniliformin in food and feed. EFSA Journal, 16(3), e05082. https://doi.org/10.2903/j.efsa.2018.5082
- Emmanuel, K. T., Els, V. P., Bart, H., Evelyne, D., Els, V. H., & Els, D. (2020). Carry-over of some fusarium mycotoxins in tissues and eggs of chickens fed experimentally mycotoxin-contaminated diets. Food and Chemical Toxicology, 145, 111715. https://doi.org/10.1016/j.fct.2020.111715
- Fakhri, Y., Sarafraz, M., Nematollahi, A., Ranaei, V., Soleimani-Ahmadi, M., Thai, V. N., & Mousavi Khaneghah, A. (2021). A global systematic review and meta-analysis of concentration and prevalence of mycotoxins in birds' egg. Environmental Science and Pollution Research International, 28(42), 59542–59550. https://doi.org/10.1007/s11356-021-16136-y
- Fernández-Blanco, C., Frizzell, C., Shannon, M., Ruiz, M. J., & Connolly, L. (2016). An in vitro investigation on the cytotoxic and nuclear receptor transcriptional activity of the mycotoxins fumonisin B1 and beauvericin. Toxicology Letters, 257, 1–10. https://doi.org/10.1016/j.toxlet.2016.05.021
- Fraeyman, S., Devreese, M., Antonissen, G., De Baere, S., Rychlik, M., & Croubels, S. (2016). Comparative oral bioavailability, toxicokinetics, and biotransformation of enniatin B1 and enniatin B in broiler chickens. Journal of Agricultural and Food Chemistry, 64, 7259–7264. https://doi.org/10.1021/acs.jafc.6b02913
- García-Herranz, V., Valdehita, A., Navas, J. M., & Fernández-Cruz, M. L. (2019). Cytotoxicity against fish and mammalian cell lines and endocrine activity of the mycotoxins beauvericin, deoxynivalenol and ochratoxin-A. Food and Chemical Toxicology, 127, 288–297. https://doi.org/10.1016/j.fct.2019.01.036
- Harvey, B., Edrington, T. S., Kubena, L. F., Rottinghaus, G. E., Turk, J. R., Genovese, K. J., Ziprin, R. L., & Nisbet, D. J. (2002). Toxicity of fumonisin from Fusarium verticillioides culture material and moniliformin from Fusarium fujikuroi culture material when fed singly and in combination to growing barrows. Journal of Food Protection, 65(5), 373–377. https://doi.org/10.4315/0362-028x-65.2.373
- Harvey, R. B., Edrington, T. S., Kubena, L. F., Rottinghaus, G. E., Turk, J. R., Genovese, K. J., & Nisbet, D. J. (2001). Toxicity of moniliformin from Fusarium fujikuroi culture material to growing barrows. Journal of Food Protection, 64(11), 1780–1784. https://doi.org/10.4315/0362-028x-64.11.1780
- Hoornstra, D., Andersson, M. A., Mikkola, R., & Salkinoja-Salonen, M. S. (2003). A new method for in vitro detection of microbially produced mitochondrial toxins. Toxicology In Vitro, 17(5–6), 745–751. https://doi.org/10.1016/s0887-2333(03)00097-3
- Huang, C. H., Wang, F. T., & Chan, W. H. (2019). Enniatin B1 exerts embryotoxic effects on mouse blastocysts and induces oxidative stress and immunotoxicity during embryo development. Environmental Toxicology, 34(1), 48–59. https://doi.org/10.1002/tox.22656
- Jajić, I., Dudaš, T., Krstović, S., Krska, R., Sulyok, M., Bagi, F., Savić, Z., Guljaš, D., & Stankov, A. (2019). Emerging Fusarium mycotoxins fusaproliferin, beauvericin, enniatins, and moniliformin in Serbian maize. Toxins (Basel), 11(6). https://doi.org/10.3390/toxins11060357
- Javed, T., Bunte, R. M., & Dombrink-Kurtzman, M. A. (2005). Comparative pathologic changes in broiler chicks on feed amendedwith Fusarium proliferatum culture material or purified fumonisin B1 and moniliformin. Mycopathologia, 159, 553–564. https://doi.org/10.1007/s11046-005-4518-9
- Jestoi, M. (2008). Emerging Fusarium mycotoxins fusaproliferin, beauvericin, enniatins, and moniliformin—A review. Critical Reviews in Food Science and Nutrition, 48(1), 21–49. https://doi.org/10.1080/10408390601062021
- Jimenez-Garcia, S. N., Garcia-Mier, L., Garcia-Trejo, J. F., Ramirez-Gomez, X. S., Guevara Gonzalez, R. G., & Feregrino-Perez, A. A. (2018). Fusarium mycotoxins and metabolites that modulate their production. In Fusarium—Plant diseases, pathogen diversity, genetic diversity, resistance and molecular markers (pp. 23–40). InTechOpen. https://doi.org/10.5772/intechopen.69673
- Juan, C., Mañes, J., Raiola, A., & Ritieni, A. (2013). Evaluation of beauvericin and enniatins in Italian cereal products and multicereal food by liquid chromatography coupled to triple quadrupole mass spectrometry. Food Chemistry, 140, 755–762. https://doi.org/10.1016/j.foodchem.2012.08.021
- Kalayou, S., Ndossi, D., Frizzell, C., Groseth, P. K., Connolly, L., Sørlie, M., Verhaegen, S., & Ropstad, E. (2015). An investigation of the endocrine disrupting potential of enniatin B using in vitro bioassays. Toxicology Letters, 233(2), 84–94. https://doi.org/10.1016/j.toxlet.2015.01.014
- Khoury, D. E., Fayjaloun, S., Nassar, M., Sahakian, J., & Aad, P. Y. (2019). Updates on the effect of mycotoxins on male reproductive efficiency in mammals. Toxins, 11(9). https://doi.org/10.3390/toxins11090515
- Křížová, L., Dadáková, K., Dvořáčková, M., & Kašparovský, T. (2021). Feedborne mycotoxins beauvericin and enniatins and livestock animals. Toxins, 13(1). https://doi.org/10.3390/toxins13010032
- Kubena, L. F., Harvey, R. B., Buckley, S. A., Bailey, R. H., & Rottinghaus, G. E. (1999). Effects of long-term feeding studies of diets containing moniliformin supplied by Fusarium fujikuroi culture material and fumonisin supplied by Fusarium moniliforme culture material to laying hens. Poultry Science, 78, 1499–1505. https://doi.org/10.1093/ps/78.11.1499
- Mallebrera, B., Prosperini, A., Font, G., & Ruiz, M. J. (2018). In vitro mechanisms of beauvericin toxicity: A review. Food and Chemical Toxicology, 111, 537–545. https://doi.org/10.1016/j.fct.2017.11.019
- Maranghi, F., Tassinari, R., Narciso, L., Tait, S., Rocca, C. L., Felice, G. D., Butteroni, C., Corinti, S., Barletta, B., Cordelli, E., Pacchierotti, F., Eleuteri, P., Villani, P., le Hegarat, L., Fessard, V., & Reale, O. (2018). In vivo toxicity and genotoxicity of beauvericin and enniatins. Combined approach to study in vivo toxicity and genotoxicity of mycotoxins beauvericin (BEA) and enniatin B (ENNB). EFSA Supporting Publications, 15(5), 1406E. https://doi.org/10.2903/sp.efsa.2018.EN-1406
- Marin, S., Ramos, A. J., Cano-Sancho, G., & Sanchis, V. (2013). Mycotoxins: Occurrence, toxicology, and exposure assessment. Food and Chemical Toxicology, 60, 218–237. https://doi.org/10.1016/j.fct.2013.07.047
- Mastrorocco, A., Ciani, E., Nicassio, L., Roelen, B. A. J., Minervini, F., & Dell'Aquila, M. E. (2021). Beauvericin alters the expression of genes coding for key proteins of the mitochondrial chain in ovine cumulus-oocyte complexes. Mycotoxin Research, 37(1), 1–9. https://doi.org/10.1007/s12550-020-00409-5
- Mastrorocco, A., Martino, N. A., Marzano, G., Lacalandra, G. M., Ciani, E., Roelen, B. A. J., Dell'Aquila, M. E., & Minervini, F. (2019). The mycotoxin beauvericin induces oocyte mitochondrial dysfunction and affects embryo development in the juvenile sheep. Molecular Reproduction and Development, 86, 1430–1443. https://doi.org/10.1002/mrd.23256
- Medvedova, M., Kolesarova, A., Capcarova, M., Labuda, R., Sirotkin, A. V., Kovacik, J., & Bulla, J. (2011). The effect of deoxynivalenol on the secretion activity, proliferation and apoptosis of porcine ovarian granulosa cells in vitro. Journal of Environmental Science and Health Part B, 46(3), 213–219. https://doi.org/10.1080/03601234.2011.540205
- Morgan, M. K., Bursian, S. J., Rottinghaus, G. E., Bennett, G. A., Render, J. A., & Aulerich, R. J. (1998). Subacute and reproductive effects in mink from exposure to Fusarium fujikuroi culture material (M-1214) containing known concentrations of moniliformin. Archives of Environmental Contamination and Toxicology, 35(3), 513–517. https://doi.org/10.1007/s002449900410
- Morris, C. M., Li, Y. C., Ledoux, D. R., Bermudez, A. J., & Rottinghaus, G. E. (1999). The individual and combined effects of feeding moniliformin supplied by Fusarium fujikuroi culture material and deoxynivalenol in young turkey poults. Poultry Science, 78, 1110–1115. https://doi.org/10.1093/ps/78.8.1110
- Nakajyo, S., Matsuoka, K., Kitayama, T., Yamamura, Y., Shimizu, K., Kimura, M., & Urakawa, N. (1987). Inhibitory effect of beauvericin on a high K+-induced tonic contraction in guinea-pig taenia coli. Japan Journal of Pharmacology, 45(3), 317–325. https://doi.org/10.1254/jjp.45.317
- Park, Y., & Lee, H. S. (2021). Cyclic depsipeptide mycotoxin exposure may cause human endocrine disruption: Evidence from OECD in vitro stably transfected transcriptional activation assays. Reproductive Toxicology, 100, 52–59. https://doi.org/10.1016/j.reprotox.2020.12.014
- Perego, M. C., Morrell, B. C., Zhang, L., Schütz, L. F., & Spicer, L. J. (2020). Developmental and hormonal regulation of ubiquitin-like with plant homeodomain and really interesting new gene finger domains 1 gene expression in ovarian granulosa and theca cells of cattle. Journal of Animal Science, 98(7), skaa205. https://doi.org/10.1093/jas/skaa205
- Rodríguez-Carrasco, Y., Heilos, D., Richter, L., Süssmuth, R. D., Heffeter, P., & Sulyok, M. (2016). Mouse tissue distribution and persistence of the food-born fusariotoxins enniatin B and beauvericin. Toxicology Letters, 247, 35–44. https://doi.org/10.1016/j.toxlet.2016.02.008
- Santos, R. R., Schoevers, E. J., Wu, X., Roelen, B. A. J., & Fink-Gremmels, J. (2015). The protective effect of follicular fluid against the emerging mycotoxins alternariol and beauvericin. World Mycotoxin Journal, 8(4), 445–450. https://doi.org/10.3920/WMJ2014.1829
- Schoevers, E. J., Santos, R. R., Fink-Gremmels, J., & Roelen, B. A. J. (2016). Toxicity of beauvericin on porcine oocyte maturation and preimplantation embryo development. Reproductive Toxicology, 65, 159–169. https://doi.org/10.1016/j.reprotox.2016.07.017
- Schoevers, E. J., Santos, R. R., & Roelen, B. A. J. (2021). Susceptibility of oocytes from gilts and sows to beauvericin and deoxynivalenol and its relationship with oxidative stress. Toxins, 13. https://doi.org/10.3390/toxins13040260
- Spicer, L. J., & Aad, P. Y. (2007). Insulin-like growth factor (IGF) 2 stimulates steroidogenesis and mitosis of bovine granulosa cells through the IGF1 receptor: Role of follicle-stimulating hormone and IGF2 receptor. Biology of Reproduction, 77, 18–27. https://doi.org/10.1095/biolreprod.106.058230
- Stewart, R. E., Spicer, L. J., Hamilton, T. D., Keefer, B. E., Dawson, L. J., Morgan, G. L., & Echternkamp, S. E. (1996). Levels of insulin-like growth factor (IGF) binding proteins, luteinizing hormone and IGF-I receptors, and steroids in dominant follicles during the first follicular wave in cattle exhibiting regular estrous cycles. Endocrinology, 137, 2842–2850. https://doi.org/10.1210/endo.137.7.8770905
- Tang, C. Y., Chen, Y. W., Jow, G. M., Chou, C. J., & Jeng, C. J. (2005). Beauvericin activates Ca2+-activated Cl-currents and induces cell deaths in Xenopus oocytes via influx of extracellular Ca2+. Chemical Research in Toxicology, 18(5), 825–833. https://doi.org/10.1021/tx049733d
- Tolosa, J., Rodríguez-Carrasco, Y., Ferrer, E., & Mañes, J. (2019). Identification and quantification of enniatins and beauvericin in animal feeds and their ingredients by LC-QTRAP/MS/MS. Metabolites, 9(2). https://doi.org/10.3390/metabo9020033
- Tonshin, A. A., Teplova, V. V., Andersson, M. A., & Salkinoja-Salonen, M. S. (2010). The Fusarium mycotoxins enniatins and beauvericin cause mitochondrial dysfunction by affecting the mitochondrial volume regulation, oxidative phosphorylation and ion homeostasis. Toxicology, 276(1), 49–57. https://doi.org/10.1016/j.tox.2010.07.001
- Vaclavikova, M., Malachova, A., Veprikova, Z., Dzuman, Z., Zachariasova, M., & Hajslova, J. (2013). ‘Emerging’ mycotoxins in cereals processing chains: Changes of enniatins during beer and bread making. Food Chemistry, 136(2), 750–757. https://doi.org/10.1016/j.foodchem.2012.08.031
- van Egmond, H. P., Schothorst, R. C., & Jonker, M. A. (2007). Regulations relating to mycotoxins in food: Perspectives in a global and European context. Analytical and Bioanalytical Chemistry, 389(1), 147–157. https://doi.org/10.1007/s00216-007-1317-9
- Vesonder, R. F., Gasdorf, H., & Peterson, R. E. (1993). Comparison of the cytotoxicities of Fusarium metabolites and Alternaria metabolite AAL-toxin to cultured mammalian cell lines. Archives of Environmental Contamination and Toxicology, 24, 473–477. https://doi.org/10.1007/BF01146164
- Wang, X., Sun, M., Li, J., Song, X., He, H., & Huan, Y. (2021). Melatonin protects against defects induced by enniatin B1 during porcine early embryo development. Aging, 13(4), 5553–5570. https://doi.org/10.18632/aging.202484