5-Fluorouracil and its active metabolite FdUMP cause DNA damage in human SW620 colon adenocarcinoma cell line
Renata Matuo
Departamento de Biofísica/Centro de Biotecnologia Universidade Federal do Rio Grande do Sul, UFRGS Porto Alegre, RS, Brazil.
Search for more papers by this authorFabrício Garmus Sousa
Departamento de Biofísica/Centro de Biotecnologia Universidade Federal do Rio Grande do Sul, UFRGS Porto Alegre, RS, Brazil.
Search for more papers by this authorAlexandre E. Escargueil
Laboratory of Cancer Biology and Therapeutics Centre de Recherche Saint-Antoine, France
Institut National de la Santé et de la Recherche Médicale U893, France
Université Pierre et Marie Curie, UMPC06, France
Instituto de Biotecnologia/Departamento de Ciências Biomédicas Universidade de Caxias do Sul, UCS Caxias do Sul, RS, Brazil
Search for more papers by this authorIvana Grivicich
Laboratório de Marcadores de Estresse Celular/Centro Pesquisas em Ciências Médicas Universidade Luterana do Brasil, Ulbra Canoas, RS, Brazil.
Search for more papers by this authorDaniel Garcia-Santos
Laboratório de Imunogenética/Departamento de Genética Universidade Federal do Rio Grande do Sul, UFRGS Porto Alegre, RS, Brazil
Search for more papers by this authorJosé Artur Bogo Chies
Laboratório de Imunogenética/Departamento de Genética Universidade Federal do Rio Grande do Sul, UFRGS Porto Alegre, RS, Brazil
Search for more papers by this authorJenifer Saffi
Departamento de Biofísica/Centro de Biotecnologia Universidade Federal do Rio Grande do Sul, UFRGS Porto Alegre, RS, Brazil.
Laboratório de Genética Toxicológica Universidade Luterana Brasileira, Ulbra Canoas, RS Brazil
Search for more papers by this authorAnnette K. Larsen
Laboratory of Cancer Biology and Therapeutics Centre de Recherche Saint-Antoine, France
Institut National de la Santé et de la Recherche Médicale U893, France
Université Pierre et Marie Curie, UMPC06, France
Search for more papers by this authorCorresponding Author
João Antonio Pêgas Henriques
Departamento de Biofísica/Centro de Biotecnologia Universidade Federal do Rio Grande do Sul, UFRGS Porto Alegre, RS, Brazil.
Instituto de Biotecnologia/Departamento de Ciências Biomédicas Universidade de Caxias do Sul, UCS Caxias do Sul, RS, Brazil
Laboratório de Genética Toxicológica Universidade Luterana Brasileira, Ulbra Canoas, RS Brazil
Universidade Federal do Rio Grande do Sul — UFRGS / Centro de Biotecnologia, Av. Bento Gonçalves, 9500 Prédio 43421, Caixa Postal 15005, Agronomia CEP: 91501-970, Porto Alegre, RS, Brazil.Search for more papers by this authorRenata Matuo
Departamento de Biofísica/Centro de Biotecnologia Universidade Federal do Rio Grande do Sul, UFRGS Porto Alegre, RS, Brazil.
Search for more papers by this authorFabrício Garmus Sousa
Departamento de Biofísica/Centro de Biotecnologia Universidade Federal do Rio Grande do Sul, UFRGS Porto Alegre, RS, Brazil.
Search for more papers by this authorAlexandre E. Escargueil
Laboratory of Cancer Biology and Therapeutics Centre de Recherche Saint-Antoine, France
Institut National de la Santé et de la Recherche Médicale U893, France
Université Pierre et Marie Curie, UMPC06, France
Instituto de Biotecnologia/Departamento de Ciências Biomédicas Universidade de Caxias do Sul, UCS Caxias do Sul, RS, Brazil
Search for more papers by this authorIvana Grivicich
Laboratório de Marcadores de Estresse Celular/Centro Pesquisas em Ciências Médicas Universidade Luterana do Brasil, Ulbra Canoas, RS, Brazil.
Search for more papers by this authorDaniel Garcia-Santos
Laboratório de Imunogenética/Departamento de Genética Universidade Federal do Rio Grande do Sul, UFRGS Porto Alegre, RS, Brazil
Search for more papers by this authorJosé Artur Bogo Chies
Laboratório de Imunogenética/Departamento de Genética Universidade Federal do Rio Grande do Sul, UFRGS Porto Alegre, RS, Brazil
Search for more papers by this authorJenifer Saffi
Departamento de Biofísica/Centro de Biotecnologia Universidade Federal do Rio Grande do Sul, UFRGS Porto Alegre, RS, Brazil.
Laboratório de Genética Toxicológica Universidade Luterana Brasileira, Ulbra Canoas, RS Brazil
Search for more papers by this authorAnnette K. Larsen
Laboratory of Cancer Biology and Therapeutics Centre de Recherche Saint-Antoine, France
Institut National de la Santé et de la Recherche Médicale U893, France
Université Pierre et Marie Curie, UMPC06, France
Search for more papers by this authorCorresponding Author
João Antonio Pêgas Henriques
Departamento de Biofísica/Centro de Biotecnologia Universidade Federal do Rio Grande do Sul, UFRGS Porto Alegre, RS, Brazil.
Instituto de Biotecnologia/Departamento de Ciências Biomédicas Universidade de Caxias do Sul, UCS Caxias do Sul, RS, Brazil
Laboratório de Genética Toxicológica Universidade Luterana Brasileira, Ulbra Canoas, RS Brazil
Universidade Federal do Rio Grande do Sul — UFRGS / Centro de Biotecnologia, Av. Bento Gonçalves, 9500 Prédio 43421, Caixa Postal 15005, Agronomia CEP: 91501-970, Porto Alegre, RS, Brazil.Search for more papers by this authorAbstract
5-Fluorouracil (5-FU) is an antineoplasic drug widely used to treat cancer. Its cytotoxic effect has been principally ascribed to the misincorporation of fluoronucleotides into DNA and RNA during their synthesis, and the inhibition of thymidylate synthase (TS) by FdUMP (one of the 5-FU active metabolites), which leads to nucleotide pool imbalance. In the present study, we compared the ability of 5-FU and FdUMP to induce apoptosis and to influence the cell cycle progression in human colon SW620 adenocarcinoma cells in regards to their genotoxic and clastogenic activities. Our study demonstrates that 5-FU induces SSB, DSB and apoptosis earlier than FdUMP. Interestingly, while both drugs are able to induce apoptosis, their effect on the cell cycle progression differed. Indeed, 5-FU induces an arrest in G1/S while FdUMP causes an arrest in G2/M. Independently of the temporal difference in strand breaks and apoptosis induction, as well as the differential cell cycle modulation, both drugs presented similar clastogenic effects. The different pattern of cell cycle arrest suggests that the two drugs induce different types of primary DNA lesions that could lead to the activation of different checkpoints and recruit different DNA repair pathways. Copyright © 2008 John Wiley & Sons, Ltd.
References
- Amarante-Mendes GP, Bossy-Wetzel E, Brunner T, Green DR. 1998. Apoptosis assay. In Cell: A Laboratory Manual, Spector DL, Goldman R, Leinwand L (eds). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory; 15.1–15.24.
- Bastiani M, Vidotto MC, Horn F. 2005. An avian pathogenic Escherichia coli isolate induces caspase 3/7 activation in J774 macrophages. FEMS Microbiol. Lett. 253: 133–140.
- Berger SH, Pittman DL, Wyatt MD. 2008. Uracil in DNA: consequences for carcinogenesis and chemotherapy. Biochem. Pharmacol. 76: 697–706.
- Burlinson B, Tice RR, Speit G, Agurell E, Brendler-Schwaab SY, Collins AR, Escobar P, Honma M, Kumaravel TS, Nakajima M, Sasaki YF, Thybaud V, Uno Y, Vasquez M, Hartmann A. 2007. Fourth International Workgroup on Genotoxicity Testing: results of the in vivo comet assay workgroup. Mutat. Res. 627: 31–35.
- Carethers JM, Chauhan DP, Fink D, Nebel S, Bresalier RS, Howell SB, Boland R. 1999. Mismatch repair proficiency and in vitro response to 5-fluorouracil. Gastroenterology 117: 123–131.
- Collins AR. 2004. The comet assay for DNA damage and repair: principles, applications and limitations. Mol. Biotechnol. 26: 249–261.
- Curtin NJ, Harris AL, Aherne GW. 1991. Mechanism of cell death following thymidylate synthase inhibition: 2′-deoxyuridine-5′-triphosphate accumulation, DNA damage, and growth inhibition following exposure to CB3717 and dipyridamole. Cancer Res. 51: 2346–2352.
- Fisher F, Baerenfaller K, Jiricny J. 2007. 5-Fluorouracil is efficiently removed from DNA by the base excision and mismatch repair systems. Gastroenterology 133: 1858–1868.
- Grem JL. 1997. Mechanisms of action and modulation of fluorouracil. Semin. Radiat. Oncol. 7: 249–259.
- Grivicich I, Regner A, Rocha AB, Grass LB, Alves PAG, Kayser GB, Schwartsmann G, Henriques JAP. 2005. Irinotecan/5-fluorouracil combination induces alterations in mitochondrial membrane potential and caspases on colon cancer cell lines. Oncol. Res. 15: 1–8.
- Harvey AC, Jackson SP, Downs JA. 2005. Saccharomyces cerevisiae Histone H2A Ser122 facilitates DNA repair. Genetics 170: 543–553.
- Li L, Connor EE, Berger SH, Wyatt MD. 2005. Determination of apoptosis, uracil incorporation, DNA strand breaks, and sister chromatid exchanges under conditions of thymidylate deprivation in a model of BER deficiency. Biochem. Pharmacol. 70: 1458–1468.
- Liao ZY, Sordet O, Zhang HL, Kohlhagen G, Antony S, Gmeiner WH, Pommier Y. 2005. A novel polypyrimidine antitumor agent FdUMP[10] induces thymidineless death with topoisomerase I — DNA complexes. Cancer Res. 65: 4844–4851.
- Longley DB, Allen WL, McDermott U, Wilson TR, Latif T, Boyer J, Lynch M, Johnston PG. 2004. The roles of thymidylate synthase and p53 in regulation mediated apoptosis in response to antimetabolites. Clin. Cancer Res. 10: 3562–3571.
- Lorge E, Thybaud V, Aardema MJ, Oliver J, Wakata A, Lorenzon G, Marzin D. 2006. SFTG international collaborative study on in vitro micronucleus test I. General conditions and overall conclusions of the study. Mutat. Res. 607: 13–36.
- Luo Y, Walla M, Wyatt MD. 2008. Uracil incorporation into genomic DNA does not predict toxicity caused by chemotherapeutic inhibition of thymidylate synthase. DNA Repair 7: 162–169.
- Matsushima T, Hayashi M, Matsuoka A, Ishidate Jr. M, Miura KF, Shimizu H, Suzuki Y, Morimoto K, Ogura H, Mure K, Koshi K, Sofuni T. 1999. Validation study of the in vitro micronucleus test in a Chinese hamster lung cell line (CHL/IU). Mutagenesis 14: 569–580.
- Maybaum J, Ullman B, Mandel HG, Day JL, Sadee W. 1980. Regulation of RNA and DNA direct actions of 5-fluoropyrimidines in mouse T-lymphoma (S49) cells. Cancer Res. 40: 4209–4215.
- McGahon AJ, Martin SJ, Bissonnette RP, Mahboudi A, Shi Y, Mogil RJ, Nishioka WK, Green DR. The end of the (cell) line: methods for the study of apoptosis in vitro. In Methods in Cell Biology, Schurartz LM, Osbourne BA (eds), Vol. 46. Academic Press: London, 1995; 153–184.
- Meyers M, Hwang A, Wagner MW, Bruening AJ, Veigl ML, Sedwick WD, Boothman DA. 2003. A role for DNA mismatch repair in sensing and responding to fluoropyrimidine damage. Oncogene 22: 7376–7388.
- Meyers M, Wagner MW, Mazurek A, Schmutte C, Fishel R, Boothman DA. 2005. DNA mismatch repair-dependent response to fluoropyrimidine-generated damage. J. Biol. Chem. 280: 5516–5526.
- Noordhuis P, Holwerda U, van der Wilt CL, van Groening CJ, Smid K, Meijer S, Pinedo HM, Peters GJ. 2004. 5-fluorouracil incorporation into RNA and DNA in relation to thymidilate synthase inhibition of human colorectal cancers. Ann. Oncol. 15: 1025–1032.
- Oka H, Ikeda K, Yoshimura H, Ohuchida A, Honma M. 2006. Relationship between p53 status and 5-fluorouracil sensitivity in 3 cell lines. Mutat. Res. 606: 52–60.
- Oliver J, Meunier JR, Awogi T, Elhajouji A, Ouldelhkin MC, Bichet N, Thybaud V, Lorenzon G, Marzin D, Lorge E. 2006. SFTG international collaborative study on in vitro micronucleus test V. Using L5178Y cells. Mutat. Res. 607: 125–152.
- Pizzorno G, Sun Z, Handschumacher RE. 1995. Aberrant cell cycle inhibition pattern in human colon carcinoma cell lines after exposure to 5-fluorouracil. Biochem. Pharmacol. 49: 553–557.
- Rahman Z, Kohli K, Khar RK, Ali M, Charoo NA, Shamsher AAA. 2006. Characterization of 5-fluorouracil microspheres for colonic delivery. AAPS PharmSciTech 7: 1–9.
- Seiple L, Jaruga P, Dizdaroglu M, Stivers JT. 2006. Linking uracil base excision repair and 5-fluorouracil toxicity in yeast. Nucl. Acids Res. 34: 140–151.
- Shewach DS, Lawrence TS. 2007. Antimetabolites radiosensitizers. J. Clin. Oncol. 25: 4043–4050.
- Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D, Warren JT, Bokesch H, Kenney S, Boyd MR. 1990. New colorimetric cytotoxicity assay for anticancer-drug screening. J. Natl. Cancer Inst. 13: 1107–1112.
- Skladanowski A, Côme M-J, Sabisz M, Escargueil AE, Larsen AK. 2005. Down-regulation of DNA topoisomerase IIα leads to prolonged cell cycle transit in G2 and early M phases and increased survival to microtubule-interacting agents. Mol. Pharmacol. 68: 625–634.
- Soares DG, Escargueil AE, Poindessous V, Sarasin A, Gramont A, Bonatto D, Henriques JAP, Larsen AK. 2007. Replication and homologous recombination repair regulate DNA double-strand break formation by the antitumor alkylator ecteinascidin 743. Proc. Natl Acad. Sci. USA 104: 13062–13067.
- Tice RR, Agurell E, Anderson D, Burinson B, Hartmann A, Kobayashi H, Miyamae Y, Rojas E, Ryu JC, Sassaki YF. 2000. Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ. Mol. Mutagen. 35: 206–221.
- Tokunaga E, Oda S, Fukushima M, Maehara Y, Sugimachi K. 2000. Differential growth inhibition by 5-fluorouracil in human colorectal carcinoma cell lines. Eur. J. Cancer 36: 1998–2006.
- Wang ZB, Liu YQ, Cui YF. 2005. Pathways to caspase activation. Cell Biol. Int. 29: 489–496.
- Webley SD, Hardcastle A, Ladner RD, Jackman AL, Aherne GW. 2000. Deoxyuridine triphosphatase (dUTPase) expression and sensitivity to the thymidylate synthase (TS) inhibitor ZD9331. Br. J. Cancer 83: 792–799.
- Webley SD, Hardcastle A, Ladner RD, Jackman AL, Aherne GW. 2001. The ability to accumulate deoxyuridine triphosphate and cellular response to thymidylate synthase inhibition. Br. J. Cancer 85: 446–52.
- Welsh SJ, Hobbs S, Aherne GW. 2003. Expression of uracil DNA glycosylase (UDG) does not affect cellular sensitivity to thymidylate synthase (TS) inhibition. Eur. J. Cancer 39: 378–387.
- Werner JM, Steinfelder HJ. 2008. A microscope technique to study kinetics and concentration — response of drug induced caspase 3 activation on a single cell level. J. Pharmacol. Toxicol. Meth. 2: 131–137.
10.1016/j.vascn.2007.11.001 Google Scholar