An assessment of a massively parallel sequencing approach for the identification of individuals from mass graves of the Spanish Civil War (1936–1939)
Francesc Calafell
Institut de Biologia Evolutiva (UPF-CSIC), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08003 Barcelona, Catalonia, Spain
Search for more papers by this authorRoger Anglada
Genomics Core Facility, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Catalonia, Spain
Search for more papers by this authorNúria Bonet
Genomics Core Facility, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Catalonia, Spain
Search for more papers by this authorMercedes González-Ruiz
Unitat d'Antropologia Biològica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia, Spain
Search for more papers by this authorGemma Prats-Muñoz
Unitat d'Antropologia Biològica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia, Spain
Search for more papers by this authorRaquel Rasal
Genomics Core Facility, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Catalonia, Spain
Search for more papers by this authorCarles Lalueza-Fox
Institut de Biologia Evolutiva (UPF-CSIC), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08003 Barcelona, Catalonia, Spain
Search for more papers by this authorJaume Bertranpetit
Institut de Biologia Evolutiva (UPF-CSIC), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08003 Barcelona, Catalonia, Spain
Search for more papers by this authorAssumpció Malgosa
Unitat d'Antropologia Biològica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia, Spain
Search for more papers by this authorCorresponding Author
Ferran Casals
Genomics Core Facility, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Catalonia, Spain
Correspondence: Dr. Ferran Casals, Genomics Core Facility, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Carrer Doctor Aiguader 88, 08003 Barcelona, Catalonia, Spain
E-mail: [email protected]
Fax: +34 933160901
Search for more papers by this authorFrancesc Calafell
Institut de Biologia Evolutiva (UPF-CSIC), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08003 Barcelona, Catalonia, Spain
Search for more papers by this authorRoger Anglada
Genomics Core Facility, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Catalonia, Spain
Search for more papers by this authorNúria Bonet
Genomics Core Facility, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Catalonia, Spain
Search for more papers by this authorMercedes González-Ruiz
Unitat d'Antropologia Biològica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia, Spain
Search for more papers by this authorGemma Prats-Muñoz
Unitat d'Antropologia Biològica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia, Spain
Search for more papers by this authorRaquel Rasal
Genomics Core Facility, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Catalonia, Spain
Search for more papers by this authorCarles Lalueza-Fox
Institut de Biologia Evolutiva (UPF-CSIC), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08003 Barcelona, Catalonia, Spain
Search for more papers by this authorJaume Bertranpetit
Institut de Biologia Evolutiva (UPF-CSIC), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08003 Barcelona, Catalonia, Spain
Search for more papers by this authorAssumpció Malgosa
Unitat d'Antropologia Biològica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia, Spain
Search for more papers by this authorCorresponding Author
Ferran Casals
Genomics Core Facility, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Catalonia, Spain
Correspondence: Dr. Ferran Casals, Genomics Core Facility, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Carrer Doctor Aiguader 88, 08003 Barcelona, Catalonia, Spain
E-mail: [email protected]
Fax: +34 933160901
Search for more papers by this authorAbstract
Next-generation sequencing technologies have opened new opportunities in forensic genetics. Here, we assess the applicability and performance of the MiSeq FGx™ & ForenSeq™ DNA Signature Prep Kit (Illumina) for the identification of individuals from the mass graves of the Spanish Civil War (1936–1939). The main limitations for individual identification are the low number of possible first-degree living relatives and the high levels of DNA degradation reported in previous studies. Massively parallel sequencing technologies enabling the analysis of hundreds of regions and prioritizing short length amplicons constitute a promising tool for this kind of approaches. In this study, we first explore the power of this new technology to detect first- and second-degree kinship given different scenarios of DNA degradation. Second, we specifically assess its performance in a set of low DNA input samples previously analyzed with CE technologies. We conclude that this methodology will allow identification of up to second-degree relatives, even in situations with low sequencing performance and important levels of allele drop-out; it is thus a technology that resolves previous drawbacks and that will allow a successful approximation to the identification of remains.
Supporting Information
Filename | Description |
---|---|
elps5949-sup-0001-SupMat.docx178.9 KB | Table S1. References for the allele frequencies used for the power analysis. Table S2. Likelihood ratio of individual identification and chance of exclusion of false positives by comparison to first degree relatives, using autosomal markers. Table S3. Likelihood ratio of individual identification by comparison to second degree relatives. Table S4. Likelihood ratio of false individual identification by comparison to second degree relatives. Table S5. Number of reads per locus in each sample (STRs) Table S6. Number of reads per locus in each sample (iSNPs) Figure S1. Likelihood ratio of individual identification in 100,000 simulations for a real scenario of father-offspring, considering autosomal loci. Figure S2. A) Likelihood ratio of individual identification in 100,000 simulations for a real scenario of grandfather-maternal granddaughter or uncle-paternal niece, considering autosomal loci and X chromosome STRs. B) Likelihood ratio of individual identification in 100,000 simulations for a real scenario of uncle-maternal nephew, considering autosomal loci and X chromosome STRs. C) Likelihood ratio of individual identification in 100,000 simulations for a real scenario of grandfather-maternal grandson, considering autosomal loci and X chromosome STRs. Figure S3. A) Likelihood ratio of incorrect individual identification in 100,000 simulations for a false scenario of grandfather-maternal granddaughter or uncle-paternal niece, considering autosomal loci and X chromosome STRs. B) Likelihood ratio of incorrect individual identification in 100,000 simulations for a false scenario of uncle-maternal nephew, considering autosomal loci and X chromosome STRs. C) Likelihood ratio of incorrect individual identification in 100,000 simulations for a false scenario of uncle-maternal niece, considering autosomal loci and X chromosome STRs. D) Likelihood ratio of incorrect individual identification in 100,000 simulations for a false scenario of grandfather-maternal grandson, considering autosomal loci and X chromosome STRs. Figure S4. Example of isometric heterozygote alleles at D9S1122, where the two alleles of the same size show different sequence motifs. The stutter associated with each allele can also be distinguished thanks to the sequence information. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
5 References
- 1van Dijk, E. L., Auger, H., Jaszczyszyn, Y., Thermes, C., Trends Genet. 2014, 30, 418–426.
- 2Mertes, F., Elsharawy, A., Sauer, S., van Helvoort, J. M. L. M., van der Zaag, P. J., Franke, A., Nilsson, M., Lehrach, H., Brookes, A. J., Brief Funct. Genomics 2011, 10, 374–386.
- 3Churchill, J. D., Schmedes, S. E., King, J. L., Budowle, B., Forensic Sci. Int. Genet. 2016, 20, 20–29.
- 4Fordyce, S. L., Mogensen, H. S., Børsting, C., Lagacé, R. E., Chang, C.-W., Rajagopalan, N., Morling, N., Forensic Sci. Int. Genet. 2015, 14, 132–140.
- 5Yang, Y., Xie, B., Yan, J., Genomics Proteomics Bioinformatics 2014, 12, 190–197.
- 6Pitterl, F., Schmidt, K., Huber, G., Zimmermann, B., Delport, R., Amory, S., Ludes, B., Oberacher, H., Parson, W., Int. J. Legal Med. 2010, 124, 551–558.
- 7Planz, J. V., Budowle, B., Hall, T., Eisenberg, A. J., Sannes-Lowery, K. A., Hofstadler, S. A., Forensic Sci. Int. Genet. Suppl. Ser. 2009, 2, 529–531.
10.1016/j.fsigss.2009.08.163 Google Scholar
- 8Oberacher, H., Pitterl, F., Huber, G., Niederstätter, H., Steinlechner, M., Parson, W., Hum. Mutat. 2008, 29, 427–432.
- 9Hofstadler, S. A., Hall, T. A., Sannes-Lowery, K. A., Manalili, S., Paulsen, J. E., McCurdy, L. D., Gioeni, L., Penella, T., Eisenberg, A. J., Planz, J. V., Budowle, B., Forensic Sci. Int. Genet. Suppl. Ser. 2009, 2, 524–526.
10.1016/j.fsigss.2009.08.140 Google Scholar
- 10Casals, F., Bertranpetit, J., Science 2012, 337, 39–40.
- 11Baeta, M., Núñez, C., Cardoso, S., Palencia-Madrid, L., Herrasti, L., Etxeberria, F., de Pancorbo, M. M., Forensic Sci. Int. Genet. 2015, 19, 272–279.
- 12Herrasti, L., Etxeberria Gabilondo, F., Martínez de Pancorbo, M., Cardoso, S., Boletín Galego Med. Leg. e Forense 2012, 18, 55–70.
- 13Alonso, A., Martín, P., Albarrán, C., García, P., Aguirre, A., Fernández, C., Boletín Galego Med. Leg. e Forense 2012, 18, 117–123.
- 14Malgosa, A., Armentano, N., Galtés, I., Jordana, X., Subirana, M., Gassiot, E., Luna, M., Lalueza, C., Solé, Q., Cuad. Med. Forense 2010, 16, 65–79.
10.4321/S1135-76062010000100008 Google Scholar
- 15Crespillo, M., Paredes, M., Arimany, J., Guerrero, L., Valverde, J., Cuad. Med. Forense 2004, 38, 37–46.
- 16Zupanič Pajnič, I., Gornjak Pogorelc, B., Balažic, J., Int. J. Legal Med. 2010, 124, 307–317.
- 17Palo, J. U., Hedman, M., Söderholm, N., Sajantila, A., Croat. Med. J. 2007, 48, 528–35.
- 18Hill, C. R., Butler, J. M., Coble, M. D., “http://www.cstl.nist.gov/biotech/strbase/NISTpopdata/Allele_Frequencies_for_26miniSTRs.pdf,” n.d.
- 19Phillips, C., Kind, S., Fernandez-Formoso, L., Gelabert-Besada, M., Carracedo, A., Lareu, M. V, Int. J. Legal Med. 2013, 127, 901–906.
- 20Ferragut, J. F., Bentayebi, K., Castro, J. A., Ramon, C., Picornell, A., Int. J. Legal Med. 2015, 129, 253–255.
- 21Solé-Morata, N., Bertranpetit, J., Comas, D., Calafell, F., Eur. J. Hum. Genet. 2015, 23, 1549–1557.
- 22Poinar, H. N., Int. Congr. Ser. 2003, 1239, 575–579.
10.1016/S0531-5131(02)00624-6 Google Scholar
- 23Malgosa, A., Montiel, R., Díaz, N., Solórzano, E., Smerling, A., Isidro, A., García, C., Simon, M., in: S. G. Pandalai (Ed.), Recent Research Developments in Microbiology Vol. 9, Part II, Research Signpost, Kerala, India 2005, pp. 213–236.
- 24Lalueza-Fox, C., Rompler, H., Caramelli, D., Staubert, C., Catalano, G., Hughes, D., Rohland, N., Pilli, E., Longo, L., Condemi, S., de la Rasilla, M., Fortea, J., Rosas, A., Stoneking, M., Schoneberg, T., Bertranpetit, J., Hofreiter, M., Science 2007, 318, 1453–1455.
- 25 Illumina, n.d., DOI Illumina, Inc. Catalog # TG-450-9001DOC Material # 20000923 Document # 15049528 v01 September 2015.
- 26 Illumina, n.d., DOI Part # 15050524 Rev. C February 2015.
- 27 Illumina, n.d., DOI Part # 15053876 Rev. C June 2015.
- 28Kremser, A., Bayer, B., Jung, S., Anslinger, K., Forensic Sci. Int. Genet. Suppl. Ser. 2009, 2, 106–107.
10.1016/j.fsigss.2009.08.040 Google Scholar