Electrochemical Immunosensor Made with Zein-based Nanofibers for On-site Detection of Aflatoxin B1
Corresponding Author
Danilo M. Dos Santos
Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 13560-970 São Carlos, SP, Brazil
These authors contributed equally to this work.
Search for more papers by this authorFernanda L. Migliorini
Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 13560-970 São Carlos, SP, Brazil
These authors contributed equally to this work.
Search for more papers by this authorAndrey C. Soares
Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 13560-970 São Carlos, SP, Brazil
Search for more papers by this authorLuiz H. C. Mattoso
Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 13560-970 São Carlos, SP, Brazil
Search for more papers by this authorOsvaldo N. Oliveira Jr.
São Carlos Institute of Physics, University of São Paulo, P.O. Box 369, São Carlos, 13560-970, SP Brazil
Search for more papers by this authorCorresponding Author
Daniel S. Correa
Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 13560-970 São Carlos, SP, Brazil
Search for more papers by this authorCorresponding Author
Danilo M. Dos Santos
Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 13560-970 São Carlos, SP, Brazil
These authors contributed equally to this work.
Search for more papers by this authorFernanda L. Migliorini
Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 13560-970 São Carlos, SP, Brazil
These authors contributed equally to this work.
Search for more papers by this authorAndrey C. Soares
Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 13560-970 São Carlos, SP, Brazil
Search for more papers by this authorLuiz H. C. Mattoso
Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 13560-970 São Carlos, SP, Brazil
Search for more papers by this authorOsvaldo N. Oliveira Jr.
São Carlos Institute of Physics, University of São Paulo, P.O. Box 369, São Carlos, 13560-970, SP Brazil
Search for more papers by this authorCorresponding Author
Daniel S. Correa
Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 13560-970 São Carlos, SP, Brazil
Search for more papers by this authorAbstract
A disposable electrochemical immunosensor for on-site detection of aflatoxin B1(AFB1), one of the most toxic mycotoxins in agri-food products, was fabricated through a low-cost cut-printing method and then modified with zein/polypyrrole(PPy) electrospun nanofibers onto which anti-AFB1 monoclonal antibodies were immobilized covalently. Fabrication was possible with an innovative and simple approach to adsorb nanofibers onto the working electrode during electrospinning. Electrochemical impedance spectroscopy was employed as the principle of detection, and the data collected with a portable potentiostat were treated with information visualization techniques. The nanostructured immunosensor showed a high sensitivity for AFB1 with a linear detection range from 0.25 to 10 ng mL−1 and a theoretical limit of detection of 0.092 ng mL−1, which is adequate to detect AFB1 in food, according to regulatory agencies.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
elan202100672-sup-0001-misc_information.pdf1.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1H. Sohrabi, A. Hemmati, M. R. Majidi, S. Eyvazi, A. Jahanban-Esfahlan, B. Baradaran, R. Adlpour-Azar, A. Mokhtarzadeh, M. de la Guardia, TrAC Trends Anal. Chem. 2021, 143, 116344.
- 2S. Eyvazi, B. Baradaran, A. Mokhtarzadeh, M. de la Guardia, Trends Food Sci. Technol. 2021, 114, 712–721.
- 3L. A. Mercante, A. Pavinatto, T. S. Pereira, F. L. Migliorini, D. M. dos Santos, D. S. Correa, Sensors and Actuators Reports 2021, 100048.
10.1016/j.snr.2021.100048 Google Scholar
- 4C. Zhang, C. Jiang, L. Lan, J. Ping, Z. Ye, Y. Ying, TrAC Trends Anal. Chem. 2021, 143, 116369.
- 5O. S. Kwon, H. S. Song, T. H. Park, J. Jang, Chem. Rev. 2018, 119, 36–93.
- 6K. B. R. Teodoro, R. C. Sanfelice, F. L. Migliorini, A. Pavinatto, M. H. M. Facure, D. S. Correa, ACS Sens. 2021, 6, 2473–2496.
- 7R. Gupta, N. Raza, S. K. Bhardwaj, K. Vikrant, K. H. Kim, N. Bhardwaj, J. Hazard. Mater. 2021, 401, 123379.
- 8S. Kurbanoglu, C. Erkmen, B. Uslu, TrAC Trends Anal. Chem. 2020, 124, 115809.
- 9K. Yugender Goud, V. Sunil Kumar, A. Hayat, K. Vengatajalabathy Gobi, H. Song, K. H. Kim, J. L. Marty, J. Electroanal. Chem. 2019, 832, 336–342.
- 10A. Gevaerd, C. E. Banks, M. F. Bergamini, L. H. Marcolino-Junior, Sens. Actuators B 2020, 307, 127547.
- 11A. Smart, A. Crew, R. Pemberton, G. Hughes, O. Doran, J. P. Hart, TrAC Trends Anal. Chem. 2020, 127, 115898.
- 12F. Ma, L. He, E. Lindner, D. Y. Wu, Appl. Surf. Sci. 2021, 542, 148732.
- 13L. Shi, Z. Wang, G. Yang, H. Yang, F. Zhao, Appl. Surf. Sci. 2020, 527, 146934.
- 14V. T. Le, Y. Vasseghian, E. N. Dragoi, M. Moradi, A. Mousavi Khaneghah, Food Chem. Toxicol. 2021, 148, 111931.
- 15F. L. Migliorini, D. M. dos Santos, A. C. Soares, L. H. C. Mattoso, O. N. Oliveira, D. S. Correa, Chemosensors 2020, 8, 87.
- 16P. P. Mane, R. S. Ambekar, B. Kandasubramanian, Int. J. Pharm. 2020, 583, 119364.
- 17C. Cleeton, A. Keirouz, X. Chen, N. Radacsi, ACS Biomater. Sci. Eng. 2019, 5, 4183–4205.
- 18Y. Liu, M. Hao, Z. Chen, L. Liu, Y. Liu, W. Yang, S. Ramakrishna, Curr. Opin. Biomed. Eng. 2020, 13, 174–189.
- 19L. A. Mercante, V. P. Scagion, F. L. Migliorini, L. H. C. Mattoso, D. S. Correa, TrAC Trends Anal. Chem. 2017, 91, 91–103.
- 20M. Zhang, X. Zhao, G. Zhang, G. Wei, Z. Su, J. Mater. Chem. B 2017, 5, 1699–1711.
- 21L. Mascia, W. Zhang, F. Gatto, A. Scarpellini, P. P. Pompa, E. Mele, ACS Appl. Polym. Mater. 2019, 1, 1707–1716.
- 22L. Jing, X. Wang, H. Liu, Y. Lu, J. Bian, J. Sun, D. Huang, ACS Appl. Mater. Interfaces 2018, 10, 18551–18559.
- 23C. Ding, Y. Guo, J. Liu, G. B. Kent, B. T. Jobson, X. Fu, X. Yang, W. H. Zhong, ACS Appl. Mater. Interfaces 2020, 3, 2958–2964.
- 24C. M. Ewulonu, J. L. Chukwuneke, I. C. Nwuzor, C. H. Achebe, Carbohydr. Polym. 2020, 235, 116028.
- 25B. Ivanovics, G. Gazsi, M. Reining, I. Berta, S. Poliska, M. Toth, A. Domokos, B. Nagy, A. Staszny, M. Cserhati, E. Csosz, A. Bacsi, Z. Csenki-Bakos, A. Acs, B. Urbanyi, Z. Czimmerer, J. Hazard. Mater. 2021, 416, 125788.
- 26C. Budin, H. Y. Man, C. Al-Ayoubi, S. Puel, B. M. A. van Vugt-Lussenburg, A. Brouwer, I. P. Oswald, B. van der Burg, L. Soler, Food Chem. Toxicol. 2021, 153, 112258.
- 27M. Jia, X. Liao, L. Fang, B. Jia, M. Liu, D. Li, L. Zhou, W. Kong, TrAC Trends Anal. Chem. 2021, 136, 116193.
- 28K. Y. Goud, S. K. Kalisa, V. Kumar, Y. F. Tsang, S. E. Lee, K. V. Gobi, K. H. Kim, Biosens. Bioelectron. 2018, 121, 205–222.
- 29Z. Wu, H. Pu, D. W. Sun, Trends Food Sci. Technol. 2021, 110, 393–404.
- 30B. Huang, Z. Han, Z. Cai, Y. Wu, Y. Ren, Anal. Chim. Acta 2010, 662, 62–68.
- 31A. Y. Sirhan, G. H. Tan, R. C. S. Wong, Food Control 2013, 31, 35–44.
- 32S. Zhan, J. Hu, Y. Li, X. Huang, Y. Xiong, Food Chem. 2021, 342, 128327.
- 33C. Wang, Q. Zhao, Biosens. Bioelectron. 2020, 167, 112478.
- 34L. Yu, Y. Zhang, C. Hu, H. Wu, Y. Yang, C. Huang, N. Jia, Food Chem. 2015, 176, 22–26.
- 35H. Ma, J. Sun, Y. Zhang, C. Bian, S. Xia, T. Zhen, Biosens. Bioelectron. 2016, 80, 222–229.
- 36X. Lv, Y. Zhang, G. Liu, S. Wang, RSC Adv. 2017, 16290–16294.
- 37R. Minghim, F. V. Paulovich, A. de Andrade Lopes, Vis. Data Anal. 2006 2006, 6060, 60600S.
10.1117/12.650880 Google Scholar
- 38C. M. Daikuzono, F. M. Shimizu, A. Manzoli, A. Riul, M. H. O. Piazzetta, A. L. Gobbi, D. S. Correa, F. V. Paulovich, O. N. Oliveira, ACS Appl. Mater. Interfaces 2017, 9, 19646–19652.
- 39L. H. Daly, S. E. Wiberley, 2007, 2.
- 40M. E. Nicho, H. Hu, Sol. Energy Mater. Sol. Cells 2000, 63, 423–435.
- 41M. T. Ramesan, V. Santhi, https://doi.org/10.1080/09276440.2018.1439626 2018, 25, 725–741.
- 42X. Yu, C. Li, H. Tian, L. Yuan, A. Xiang, J. Li, C. Wang, A. V. Rajulu, Chem. Eng. J. 2020, 396, 125373.
- 43L. Deng, Y. Li, F. Feng, H. Zhang, Food Hydrocolloids 2019, 87, 1–10.
- 44W. V. K. Wheelwright, A. J. Easteal, S. Ray, M. K. Nieuwoudt, J. Appl. Polym. Sci. 2013, 127, 3500–3505.
- 45A. Wieckowski, C. Korzeniewski, B. Braunschweig, Vib. Spectrosc. 2013, 4, 1–423.
- 46Z. Wu, B. Wang, Z. Cheng, X. Yang, S. Dong, E. Wang, Biosens. Bioelectron. 2001, 16, 47–52.
- 47A. Krittayavathananon, M. Sawangphruk, Anal. Chem. 2017, 89, 13283–13289.
- 48M. Ren, H. Xu, X. Huang, M. Kuang, Y. Xiong, H. Xu, Y. Xu, H. Chen, A. Wang, ACS Appl. Mater. Interfaces 2014, 6, 14215–14222.
- 49A. Inselberg, B. Dimsdale, Proc. First IEEE Conf. Vis. Vis. ‘90 n.d., 361–378.
- 50J. C. Soares, F. M. Shimizu, A. C. Soares, L. Caseli, J. Ferreira, J. Osvaldo N Oliveira, ACS Appl. Mater. Interfaces 2015, 7, 11833–11841.
- 51G. Xu, S. Zhang, Q. Zhang, L. Gong, H. Dai, Y. Lin, Sens. Actuators B 2016, 222, 707–713.
- 52P. R. Solanki, J. Singh, B. Rupavali, S. Tiwari, B. D. Malhotra, Mater. Sci. Eng. C 2017, 70, 564–571.
- 53X. Li, L. Cao, Y. Zhang, P. Yan, D. W. Kirk, Electrochim. Acta 2017, 247, 1052–1059.