Separation and Detection of Tyrosine and Phenylalanine-derived Oxidative Stress Biomarkers Using Microchip Electrophoresis with Electrochemical Detection
Dhanushka B. Weerasekara
Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS, USA
Department of Chemistry, University of Kansas, Lawrence, KS, USA
Search for more papers by this authorCorresponding Author
Susan M. Lunte
Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS, USA
Department of Chemistry, University of Kansas, Lawrence, KS, USA
Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
Search for more papers by this authorDhanushka B. Weerasekara
Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS, USA
Department of Chemistry, University of Kansas, Lawrence, KS, USA
Search for more papers by this authorCorresponding Author
Susan M. Lunte
Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS, USA
Department of Chemistry, University of Kansas, Lawrence, KS, USA
Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
Search for more papers by this authorAbstract
A method for the determination of selected aromatic amino acid biomarkers of oxidative stress using microchip electrophoresis with electrochemical detection is described. The separation of the major reaction products of phenylalanine and tyrosine with reactive nitrogen and oxygen species was accomplished using ligand exchange micellar electrokinetic chromatography with a PDMS/glass hybrid chip. Electrochemical detection was achieved using a pyrolyzed photoresist film working electrode. The system was evaluated for the analysis of the products of the Fenton reaction with tyrosine and phenylalanine, and the reaction of peroxynitrite with tyrosine.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
elan202100580-sup-0001-misc_information.pdf730.7 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1A. Ozcan, M. Ogun in Basic principles and clinical significance of oxidative stress,1st ed.,Vol.3 (Ed.: S. J. T. Gowder), IntechOPen, Croatia, 2015, 37–58.
- 2Z.-W. Ye, J. Zhang, D. M. Townsend, K. D. Tew, Biochim. Biophys. Acta Gen. Subj. 2015, 1850, 1607–1621.
- 3D. Lichtenberg, I. Pinchuk, Biochem. Biophys. Res. Commun. 2015, 461, 441–444.
- 4A. M. Pisoschi, A. Pop, F. Iordache, L. Stanca, G. Predoi, A. I. Serban, Eur. J. Med. Chem. 2020, 112891.
- 5T. Senoner, W. Dichtl, Nutrients 2019, 11, 2090.
- 6J. D. Hayes, A. T. Dinkova-Kostova, K. D. Tew, Cancer Cell 2020.
- 7W. J. Huang, X. Zhang, W. W. Chen, Biomed. Rep. 2016, 4, 519–522.
- 8D. N. Hauser, T. G. Hastings, Neurobiol. Dis. 2013, 51, 35–42.
- 9M. B. Feeney, C. Schoneich, Antioxid. Redox Signaling 2012, 17, 1571–1579.
- 10B. R. Ipson, A. L. Fisher, Ageing Res. Rev. 2016, 27, 93–107.
- 11G. A. Molnár, S. Kun, E. Sélley, M. Kertész, L. Szélig, C. Csontos, K. Böddi, L. Bogár, A. Miseta, I. Wittmann, Curr. Med. Chem. 2016, 23, 667–685.
- 12G. A. Molnár, V. Nemes, Z. Biró, A. Ludány, Z. Wagner, I. Wittmann, Free Radical Res. 2005, 39, 1359–1366.
- 13G. A. Molnár, E. Z. Mikolás, I. A. Szijártó, S. Kun, E. Sélley, I. Wittmann, World J. Diabetes 2015, 6, 500–507.
- 14A. van der Vliet, C. A. O′Neill, B. Halliwell, C. E. Cross, H. Kaur, FEBS Lett. 1994, 339, 89–92.
- 15S. Pfeiffer, K. Schmidt, B. Mayer, J. Biol. Chem. 2000, 275, 6346–6352.
- 16C. Houée-Lévin, K. Bobrowski, L. Horakova, B. Karademir, C. Schöneich, M. J. Davies, C. M. Spickett, Free Radical Res. 2015, 49, 347–373.
- 17M. Bandookwala, D. Thakkar, P. Sengupta, Crit. Rev. Anal. Chem. 2020, 50, 265–289.
- 18D. Teixeira, R. Fernandes, C. Prudêncio, M. Vieira, Biochimie 2016, 125, 1–11.
- 19T. DiMarco, C. Giulivi, Mass Spectrom. Rev. 2007, 26, 108–120.
- 20R. Biondi, S. Brancorsini, G. Poli, M. G. Egidi, E. Capodicasa, L. Bottiglieri, S. Gerli, E. Brillo, G. C. D. Renzo, D. Cretoiu, R. Micu, N. Suciu, Talanta 2018, 181, 172–181.
- 21R. Biondi, Y. Xia, R. Rossi, N. Paolocci, G. Ambrosio, J. L. Zweier, Anal. Biochem. 2001, 290, 138–145.
- 22I. Al-Sadoon, I. Wittmann, S. Kun, M. Ahmann, A. Konyi, Z. Verzár, J. Clin. Lab. Anal. 2021, 35, e23613.
- 23R. A. Ruggiero, J. Bruzzo, P. Chiarella, P. di Gianni, M. A. Isturiz, S. Linskens, N. Speziale, R. P. Meiss, O. D. Bustuoabad, C. D. Pasqualini, Cancer Res. 2011, 71, 7113–7124.
- 24S. Ishimitsu, S. Fujimoto, A. Ohara, J. Chromatogr. 1986, 378, 222–225.
- 25M. Du, W. Wu, N. Ercal, Y. Ma, J. Chromatogr. B 2004, 803, 321–329.
- 26I. Torres-Cuevas, J. Kuligowski, M. Cárcel, C. Cháfer-Pericás, M. Asensi, R. Solberg, E. Cubells, A. Nuñez, O. D. Saugstad, M. Vento, J. Escobar, Anal. Chim. Acta 2016, 913, 104–110.
- 27J. Olšovská, J. Novotná, M. Flieger, J. Spížek, Biomed. Chromatogr. 2007, 21, 1252–1258.
- 28K. Hensley, M. L. Maidt, Z. Yu, H. Sang, W. R. Markesbery, R. A. Floyd, J. Neurosci. 1998, 18, 8126–8132.
- 29P. Kumarathasan, R. Vincent, J. Chromatogr. A 2003, 987, 349–358.
- 30V. Poinsot, C. Bayle, F. Couderc, Electrophoresis 2003, 24, 4047–4062.
- 31B. Yuan, H. Wu, T. Sanders, C. McCullum, Y. Zheng, P. B. Tchounwou, Y.-M. Liu, Anal. Biochem. 2011, 416, 191–195.
- 32L. Hao, X. Zhong, T. Greer, H. Ye, L. Li, Analyst 2015, 140, 467–475.
- 33A. Hirayama, M. Tomita, T. Soga, Analyst 2012, 137, 5026–5033.
- 34H. Ren, X. Liu, S. Jiang, J. Pharm. Biomed. Anal. 2013, 78–79, 100–104.
- 35H.-L. Li, H.-B. Xu, Z.-H. Gao, J. Anal. Chem. 2007, 35, 1087–1091.
- 36Z. Chen, K. Uchiyama, T. Hobo, Enantiomer 2001, 6, 19–25.
- 37M. G. Schmid, R. Rinaldi, D. Dreveny, G. Gübitz, J. Chromatogr. A 1999, 846, 157–163.
- 38M. G. Schmid, N. Grobuschek, O. Lecnik, G. Gübitz, J. Biochem. Biophys. Methods 2001, 48, 143–154.
- 39Z. Chen, J.-M. Lin, K. Uchiyama, T. Hobo, J. Chromatogr. A 1998, 813, 369–378.
- 40D. Belder, in Chiral Analysis, Elsevier, 2006, pp. 277–295.
- 41B. M. D. C. Costa, S. Griveau, F. d′Orlye, F. Bedioui, J. A. F. da Silva, A. Varenne, Electrochim. Acta 2021, 391, 138928.
- 42K. M. Schilly, S. M. Gunawardhana, M. B. Wijesinghe, S. M. Lunte, Anal. Bioanal. Chem. 2020, 412, 6101–6119.
- 43R. A. Saylor, E. A. Reid, S. M. Lunte, Electrophoresis 2015, 36, 1912–1919.
- 44S. M. Gunawardhana, G. A. Bulgakova, A. M. Barybin, S. R. Thomas, S. M. Lunte, Analyst 2020, 145, 1768–1776.
- 45K. M. Schilly, Ph.D Thesis, University of Kansas, Lawrence, KS, 2021.
- 46C. C. Winterbourn, Toxicol. Lett. 1995, 82–83, 969–974.
- 47C. J. Miller, A. L. Rose, T. D. Waite, Frontiers in Marine Science 2016, 3, 134.
- 48Y. Zhang, M. Zhou, J. Hazard. Mater. 2019, 362, 436–450.
- 49Z. Maskos, J. D. Rush, W. H. Koppenol, Arch. Biochem. Biophys. 1992, 296, 521–529.
- 50K. M. Robinson, J. S. Beckman, in Methods in Enzymology, Vol. 396, Academic Press, 2005, pp. 207–214.
- 51S. Carballal, S. Bartesaghi, R. Radi, Biochim. Biophys. Acta Gen. Subj. 2014, 1840, 768–780.
- 52G. Ferrer-Sueta, N. Campolo, M. Trujillo, S. Bartesaghi, S. Carballal, N. Romero, B. Alvarez, R. Radi, Chem. Rev. 2018, 118, 1338–1408.