Metabolism and disposition of N,N-dimethyltryptamine and harmala alkaloids after oral administration of ayahuasca
Corresponding Author
Jordi Riba
Human Experimental Neuropsychopharmacology, Institute for Biomedical Research IIB Sant Pau, Barcelona, Spain
Centre d'Investigació de Medicaments, Servei de Farmacologia Clínica, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain, and Departament de Farmacologia, de Terapèutica i de Toxicologia, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM
Jordi Riba. Human Experimental Neuropsychopharmacology, IIB Sant Pau, Hospital de la Santa Creu i Sant Pau. St. Antoni Maria Claret, 167. Barcelona 08025, Spain.
E-mail: [email protected]
Search for more papers by this authorEthan H. McIlhenny
Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
Search for more papers by this authorMarta Valle
Centre d'Investigació de Medicaments, Servei de Farmacologia Clínica, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain, and Departament de Farmacologia, de Terapèutica i de Toxicologia, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM
Pharmacokinetic and Pharmacodynamic Modelling and Simulation, Institute for Biomedical Research IIB Sant Pau, Barcelona, Spain
Search for more papers by this authorJosé Carlos Bouso
Human Experimental Neuropsychopharmacology, Institute for Biomedical Research IIB Sant Pau, Barcelona, Spain
Centre d'Investigació de Medicaments, Servei de Farmacologia Clínica, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain, and Departament de Farmacologia, de Terapèutica i de Toxicologia, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM
Search for more papers by this authorSteven A. Barker
Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
Search for more papers by this authorCorresponding Author
Jordi Riba
Human Experimental Neuropsychopharmacology, Institute for Biomedical Research IIB Sant Pau, Barcelona, Spain
Centre d'Investigació de Medicaments, Servei de Farmacologia Clínica, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain, and Departament de Farmacologia, de Terapèutica i de Toxicologia, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM
Jordi Riba. Human Experimental Neuropsychopharmacology, IIB Sant Pau, Hospital de la Santa Creu i Sant Pau. St. Antoni Maria Claret, 167. Barcelona 08025, Spain.
E-mail: [email protected]
Search for more papers by this authorEthan H. McIlhenny
Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
Search for more papers by this authorMarta Valle
Centre d'Investigació de Medicaments, Servei de Farmacologia Clínica, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain, and Departament de Farmacologia, de Terapèutica i de Toxicologia, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM
Pharmacokinetic and Pharmacodynamic Modelling and Simulation, Institute for Biomedical Research IIB Sant Pau, Barcelona, Spain
Search for more papers by this authorJosé Carlos Bouso
Human Experimental Neuropsychopharmacology, Institute for Biomedical Research IIB Sant Pau, Barcelona, Spain
Centre d'Investigació de Medicaments, Servei de Farmacologia Clínica, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain, and Departament de Farmacologia, de Terapèutica i de Toxicologia, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM
Search for more papers by this authorSteven A. Barker
Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
Search for more papers by this authorAbstract
Ayahuasca is an Amazonian psychotropic plant tea obtained from Banisteriopsis caapi, which contains β-carboline alkaloids, chiefly harmine, harmaline and tetrahydroharmine. The tea usually incorporates the leaves of Psychotria viridis or Diplopterys cabrerana, which are rich in N,N-dimethyltryptamine (DMT), a psychedelic 5-HT2A/1A/2C agonist. The β-carbolines reversibly inhibit monoamine-oxidase (MAO), effectively preventing oxidative deamination of the orally labile DMT and allowing its absorption and access to the central nervous system. Despite increased use of the tea worldwide, the metabolism and excretion of DMT and the β-carbolines has not been studied systematically in humans following ingestion of ayahuasca. In the present work, we used an analytical method involving high performance liquid chromatography (HPLC)/electrospray ionization (ESI)/selected reaction monitoring (SRM)/tandem mass spectrometry(MS/MS) to characterize the metabolism and disposition of ayahuasca alkaloids in humans. Twenty-four-hour urine samples were obtained from 10 healthy male volunteers following administration of an oral dose of encapsulated freeze-dried ayahuasca (1.0 mg DMT/kg body weight). Results showed that less than 1% of the administered DMT dose was excreted unchanged. Around 50% was recovered as indole-3-acetic acid but also as DMT-N-oxide (10%) and other MAO-independent compounds. Recovery of DMT plus metabolites reached 68%. Harmol, harmalol, and tetrahydroharmol conjugates were abundant in urine. However, recoveries of each harmala alkaloid plus its O-demethylated metabolite varied greatly between 9 and 65%. The present results show the existence in humans of alternative metabolic routes for DMT other than biotransformation by MAO. Also that O-demethylation plus conjugation is an important but probably not the only metabolic route for the harmala alkaloids in humans. Copyright © 2012 John Wiley & Sons, Ltd.
References
- 1 R.E. Schultes, A. Hofmann. The Botany and Chemistry of Hallucinogens, Charles C. Thomas, Springfield, 1980.
- 2 R.E. Schultes, A. Hofmann. Plants of the Gods: Origins of Hallucinogenic Use, A. van der Marck, New York, 1987.
- 3 K.W. Tupper. The globalization of ayahuasca: Harm reduction or benefit maximization. Int. J. Drug Policy 2008, 19, 297l.
- 4 N.S. Buckholtz, W.O. Boggan. Monoamine oxidase inhibition in brain and liver produced by β-carbolines: Structure-activity relationships and substrate specificity. Biochem. Pharmacol. 1977, 26, 1991.
- 5 D.J. McKenna, G.H.N. Towers, F. Abbott. Monoamine oxidase inhibitors in South American hallucinogenic plants: Tryptamine and β-carboline constituents of ayahuasca. J. Ethnopharmacol. 1984, 10, 195.
- 6 S. Szára. Dimethyltryptamine: Its metabolism in man; The relation of its psychotic effect to the serotonin metabolism. Experientia 1956, 12, 441.
- 7 S. Szára. The comparison of the psychotic effect of tryptamine derivatives with the effects of mescaline and LSD-25 in self-experiments, in Psychotropic Drugs, (Eds: S. Garattini, V. Ghetti), Elsevier, Amsterdam, 1957, pp. 460–467.
- 8 R.J. Strassman, C.R. Qualls, E.H. Uhlenhuth, R. Kellner. Dose–response study of N,N-dimethyltryptamine in humans, II. Subjective effects and preliminary results of a new rating scale. Arch. Gen. Psychiatry 1994, 51, 98.
- 9 J. Riba. Human Pharmacology of Ayahuasca, doctoral thesis, Universitat Autònoma de Barcelona, 2003. Available at: http://www.tdx.cat/handle/10803/5378 [23 January 2012] .
- 10 J. Riba, S. Romero, E. Grasa, E. Mena, I. Carrió, M.J. Barbanoj. Increased frontal and paralimbic activation following ayahuasca, the pan-Amazonian inebriant. Psychopharmacology 2006, 186, 93.
- 11 R.A. Glennon, M. Dukat, B. Grella, S. Hong, L. Costantino, M. Teitler, et al. Binding of β-carbolines and related agents at serotonin (5-HT(2) and 5-HT(1A)), dopamine (D(2)) and benzodiazepine receptors. Drug Alcohol Depen. 2000, 60, 121.
- 12 P.A. Pierce, S.J. Peroutka. Hallucinogenic drug interactions with neurotransmitter receptor binding sites in human cortex. Psychopharmacology 1989, 97, 118.
- 13 D.J. McKenna, D.B. Repke, L. Lo, S.J. Peroutka. Differential interactions of indolealkylamines with 5-hydroxytryptamine receptor subtypes. Neuropharmacology 1990, 29, 193.
- 14 D. Fontanilla, M. Johannessen, A.R. Hajipour, N.V. Cozzi, M.B. Jackson, A.E. Ruoho. The hallucinogen N,N-dimethyltryptamine (DMT) is an endogenous sigma-1 receptor regulator. Science 2009, 116, 1591.
- 15 T.S. Ray. Psychedelics and the human receptorome. PLoS One 2010, 5, e9019. DOI:10.1371/journal.pone.0009019
- 16 J. Riba, A. Rodriguez-Fornells, G. Urbano, A. Morte, R. Antonijoan, M. Montero, et al. Subjective effects and tolerability of the South American psychoactive beverage Ayahuasca in healthy volunteers. Psychopharmacology 2001, 154, 85.
- 17 J. Riba, M. Valle, G. Urbano, M. Yritia, A. Morte, M.J. Barbanoj. Human pharmacology of ayahuasca: subjective and cardiovascular effects, monoamine metabolite excretion, and pharmacokinetics. J. Pharmacol. Exp. Ther. 2003, 306, 73.
- 18 J. Kaplan, L.R. Mandel, R. Stillman, R.W. Walker, W.J.A. VandenHeuvel, J.C. Gillin, et al. Blood and urine levels of N,N-dimethyltryptamine following administration of psychoactive dosages to human subjects. Psychopharmacologia 1974, 38, 239.
- 19 J. Ott. Pharmacotheon: Entheogenic Drugs, their Plant Sources and History, Natural Products Co., Kennewick, Washington, 1993.
- 20 M.S. Fish, N.M. Johnson, E.P. Lawrence, E.C. Horning. Oxidative N-dealkylation. Biochem. Biophys. Acta 1955, 18, 564.
- 21 S.A. Barker, J.A. Monti, T. Christian. Metabolism of the hallucinogen N,N-dimethyltryptamine in rat brain homogenates. Biochem. Pharmacol. 1980, 29, 1049.
- 22 B.R. Sitaram, W.R. McLeod. Observations on the metabolism of the psychotomimetic indolealkylamines: implications for future clinical studies. Biol. Psychiat. 1990, 28, 841.
- 23 E.H. McIlhenny, J. Riba, M.J. Barbanoj, R. Strassman, S.A. Barker. Methodology for the determination of the major constituents and metabolites of the Amazonian botanical medicine ayahuasca in human urine. Biomed. Chromatogr. 2011, 25, 970.
- 24 E.H. McIlhenny, J. Riba, M.J. Barbanoj, R. Strassman, S.A. Barker. Methodology for determining major constituents of ayahuasca and their metabolites in blood. Biomed. Chromatogr. 2012, 26, 301.
- 25 R.G. Dos Santos, M. Valle, J.C. Bouso, J.F. Nomdedéu, J. Rodríguez-Espinosa, E.H. McIlhenny, et al. Autonomic, neuroendocrine, and immunological effects of ayahuasca: A comparative study with d-amphetamine. J. Clin. Psychopharm. 2011, 31, 717.
- 26 W.J. Turner, S. Merlis. Effect of some indolealkylamines on man. Arch Neurol. Psychiat. 1959, 81, 121.
- 27 R.J. Strassman, C.R. Qualls. (1994) Dose–response study of N,N-dimethyltryptamine in humans, I. Neuroendocrine, autonomic and cardiovascular effects. Arch Gen. Psychiat. 1994, 51, 85.
- 28 S.A. Barker, J.A. Monti, S.T. Christian. N,N-dimethyltryptamine: An endogenous hallucinogen. Int. Rev. Neurobiol. 1981, 22, 83.
- 29 O. Suzuki, Y. Katsumata, M. Oya. Characterization of eight biogenic indoleamines as substrates for type A and type B monoamine oxidase. Biochem. Pharmacol. 1981, 30, 1353.
- 30 B.R. Sitaram, L. Lockett, G.L. Blackman, W.R. McLeod. Urinary excretion of 5-methoxy-N,N-dimethyltryptamine, N,N-dimethyltryptamine and their N-oxides in the rat. Biochem. Pharmacol. 1987, 36, 2235.
- 31 B.R. Sitaram, L. Lockett, R. Talomsin, G.L. Blackman, W.R. McLeod. In vivo metabolism of 5-methoxy-N,N-dimethyltryptamine and N,N-dimethyltryptamine in the rat. Biochem. Pharmacol. 1987, 36, 1509.
- 32 B.R. Sitaram, R. Talomsin, G.L. Blackman, W.R. McLeod. Study of metabolism of psychotomimetic indolealkylamines by rat tissue extracts using liquid chromatography. Biochem. Pharmacol. 1987, 36, 1503.
- 33 F. Raynaud, P. Pévet. 5-Methoxytryptamine is metabolized by monoamine oxidase A in the pineal gland and plasma of golden hamsters. Neurosci. Lett. 1991, 123, 172.
- 34 R.W. Fuller, H.D. Snoddy, K.W. Perry. Tissue distribution, metabolism and effects of bufotenine administered to rats. Neuropharmacol. 1995, 34, 799.
- 35 V. Ersparmer. Observations on the fate of indolealkylamines in the organism. J. Physiol. 1955, 127, 118.
- 36 L.R. Mandel, R. Prasad, B. Lopez-Ramos, R.W. Walker. The biosynthesis of dimethyltriptamine in vivo. Res. Commun. Chem. Pathol. Pharmacol. 1977, 16, 47.
- 37 S. Szára, J. Axelrod. Hydroxylation and N-demethylation of N,N-dimethyltryptamine. Experientia 1959, 15, 216.
- 38 S.A. Barker, J.M. Beaton, S.T. Christian, J.A. Monti, P.E. Morris. In vivo metabolism of α,α,β,β-tetradeutero-N,N,dimethyltryptamine in rodent brain. Biochem. Pharmacol. 1984, 33, 1395.
- 39 T.A. Slotkin, V. DiStefano, W.Y.W. Au. Blood levels and urinary excretion of harmine and its metabolites in man an rats. J. Pharmacol. Exp. Ther. 1970, 173, 26.
- 40 D.J. Tweedie, M.D. Burke. Metabolism of the beta-carbolines, harmine and harmol, by liver microsomes from phenobarbitone- or 3-methylcholanthrene-treated mice. Identification and quantitation of two novel harmine metabolites. Drug Metab. Dispos. 1987, 15, 74.
- 41 A. Yu, J.R. Idle, K.W. Krausz, A. Küpfer, F.J. Gonzalez. Contribution of individual cytochrome P450 isozymes to the O-demethylation of the psychotropic β-carboline alkaloids harmaline and harmine. J. Pharmacol. Exp. Ther. 2003, 305, 315.
- 42 A. Yu. Indolealkylamines: Biotransformations and potential drug–drug interactions. AAPS J. 2008, 10, 242.
- 43 J.C. Callaway, D.J. McKenna, C.S. Grob, G.S. Brito, L.P. Raymon, R.E. Poland, et al. Pharmacokinetics of Hoasca alkaloids in healthy humans. J. Ethnopharmacol. 1999, 65, 243.