Analytical approaches for monitoring exposure to organophosphorus and carbamate agents through analysis of protein adducts
Corresponding Author
Lawrence M. Schopfer
Eppley Institute, University of Nebraska Medical Center, Omaha, NE
Lawrence M. Schopfer, Eppley Institute, University of Nebraska Medical Center, Omaha, Nebraska 68198–5950, USA. E-mail: [email protected]Search for more papers by this authorOksana Lockridge
Eppley Institute, University of Nebraska Medical Center, Omaha, NE
Search for more papers by this authorCorresponding Author
Lawrence M. Schopfer
Eppley Institute, University of Nebraska Medical Center, Omaha, NE
Lawrence M. Schopfer, Eppley Institute, University of Nebraska Medical Center, Omaha, Nebraska 68198–5950, USA. E-mail: [email protected]Search for more papers by this authorOksana Lockridge
Eppley Institute, University of Nebraska Medical Center, Omaha, NE
Search for more papers by this authorAbstract
Appropriate treatment of a poisoned patient requires knowing the identity of the poison. This review summarizes the methods for identifying poisoning by organophosphorus and carbamate poisons. Mass spectrometry methods identify the poison from the adducts they form with proteins in blood. The most sensitive method uses potassium fluoride to release the organophosphorus agent from its covalent binding to serine 198 of human butyrylcholinesterase. The released poison is identified by gas chromatography–mass spectrometry. The drawback of this method is that it does not detect exposure to agents such as soman, because butyrylcholinesterase adducts with these agents age to a non-reactivatable form. A method that detects both aged and non-aged organophosphylated adducts as well as carbamate adducts is one that digests butyrylcholinesterase with a protease and analyzes the modified peptide by mass spectrometry. This method does not distinguish between poisons that have the same mass after reaction with butyrylcholinesterase – for example, between exposure to chlorpyrifos oxon and paraoxon. Albumin forms a stable, covalent bond with organophosphates on tyrosine 411. The rate of reaction with albumin is much slower than with butyrylcholinesterase, but albumin adducts persist for a longer time in the circulation; they do not age; and they do not release the organophosphate when a patient is treated with an oxime. Copyright © 2012 John Wiley & Sons, Ltd.
References
- 1
T.C. Marrs. Organophosphate poisoning. Pharmacol. Therapeut. 1993, 58, 51.
- 2
M.A. Brown,
K.A. Brix. Review of health consequences from high-, intermediate- and low-level exposure to organophosphorus nerve agents. J. Appl. Toxicol. 1998, 18, 393.
- 3
C. Dharmani,
K. Jaga. Epidemiology of acute organophosphate poisoning in hospital emergency room patients. Rev. Environ. Health 2005, 20, 215.
- 4
T.J. Kropp,
P. Glynn,
R.J. Richardson. The mipafox-inhibited catalytic domain of human neuropathy target esterase ages by reversible proton loss. Biochemistry 2004, 43, 3716.
- 5
J.G. Kidd,
O.R. Langworthy. Jake paralysis. Paralysis following the ingestion of Jamaica ginger extract adulterated with tri-ortho-cresyl phosphate. Bull. Johns Hopkins Hosp. 1933, 52, 39.
- 6
J.A. Romano Jr.,
J.H. McDonough,
R. Sheridan,
F.R. Sidell, Health effects of low-level exposure to nerve agents, in Chemical Warfare Agents, (Eds: S.M. Somani, J.A. Romano), CRC Press, New York, USA, 2001, pp. 1–25.
- 7
D.E. Ray,
P.G. Richards. The potential for toxic effects of chronic, low-dose exposure to organophosphates. Toxicol. Lett. 2001, 120, 343.
- 8
D.E. Ray. Chronic effects of low level exposure to anticholinesterases--a mechanistic review. Toxicol. Lett. 1998, 102/103, 527.
- 9
M.F. Bouchard,
D.C. Bellinger,
R.O. Wright,
M.G. Weisskopf. Attention-deficit/hyperactivity disorder and urinary metabolites of organophosphate pesticides. Pediatrics 2010, 125, 1270.
- 10
K.M. Hayden,
M.C. Norton,
D. Darcey,
T. Ostbye,
P.P. Zandi,
J.C. Breitner,
K.A. Welsh-Bohmer. Occupational exposure to pesticides increases the risk of incident AD: The Cache County study. Neurology 2010, 74, 1524.
- 11
D.B. Hancock,
E.R. Martin,
G.M. Mayhew,
J.M. Stajich,
R. Jewett,
M.A. Stacy,
B.L. Scott,
J.M. Vance,
W.K. Scott. Pesticide exposure and risk of Parkinson's disease: a family-based case–control study. B.M.C. Neurol. 2008, 8, 6.
- 12
F. Kamel,
L.S. Engel,
B.C. Gladen,
J.A. Hoppin,
M.C. Alavanja,
D.P. Sandler. Neurologic symptoms in licensed pesticide applicators in the agricultural health study. Hum. Exp. Toxicol. 2007, 26, 243.
- 13
C.L. Beseler,
L. Stallones,
J.A. Hoppin,
M.C. Alavanja,
A. Blair,
T. Keefe,
F. Kamel. Depression and pesticide exposures among private pesticide applicators enrolled in the Agricultural Health Study. Environ. Health Perspect. 2008, 116, 1713.
- 14
H. John,
F. Worek,
H. Thiermann. LC-MS-based procedures for monitoring of toxic organophosphorus compounds and verification of pesticide and nerve agent poisoning. Anal. Bioanal. Chem. 2008, 391, 97.
- 15
C. Sams,
H.J. Mason,
R. Rawbone. Evidence for the activation of organophosphate pesticides by cytochromes P450 3A4 and 2D6 in human liver microsomes. Toxicol. Lett. 2000, 116, 217.
- 16
B.W. Wilson,
J.D. Henderson,
J.L. Furman,
B.E. Zeller,
D. Michaelsen. Blood cholinesterases from Washington State orchard workers. Bull. Environ. Contam. Toxicol. 2009, 83, 59.
- 17
A. Grube,
D. Donaldson,
T. Kiely,
L. Wu. Pesticides Industry Sales and Usage: 2006 and 2007 Market Estimates, Office of Chemical Safety and Pollution Prevention, United States Environmental Protection Agency: Washington DC, 2011, pp. 1–33.
- 18
D. Noort,
H.P. Benschop,
R.M. Black. Biomonitoring of exposure to chemical warfare agents: A review. Toxicol. Appl. Pharmacol. 2002, 184, 116.
- 19
B. Papouskova,
P. Bednar,
P. Bartak,
P. Frycak,
J. Sevcik,
Z. Stransky,
K. Lemr. Utilisation of separation methods in the analysis of chemical warfare agents. J. Sep. Sci. 2006, 29, 1531.
- 20
M. Minami,
D.M. Hui,
M. Katsumata,
H. Inagaki,
C.A. Boulet. Method for the analysis of the methylphosphonic acid metabolites of sarin and its ethanol-substituted analogue in urine as applied to the victims of the Tokyo sarin disaster. J. Chromatogr. B: Biomed. Sci. Appl. 1997, 695, 237.
- 21
M. Nagao,
T. Takatori,
Y. Matsuda,
M. Nakajima,
H. Iwase,
K. Iwadate. Definitive evidence for the acute sarin poisoning diagnosis in the Tokyo subway. Toxicol. Appl. Pharmacol. 1997, 144, 198.
- 22
M. Polhuijs,
J.P. Langenberg,
H.P. Benschop. New method for retrospective detection of exposure to organophosphorus anticholinesterases: application to alleged sarin victims of Japanese terrorists. Toxicol. Appl. Pharmacol. 1997, 146, 156.
- 23
U.S. Bjornsdottir,
D. Smith. South African religious leader with hyperventilation, hypophosphataemia, and respiratory arrest. Lancet 1999, 354, 2130.
- 24
F. Worek,
M. Koller,
H. Thiermann,
L. Szinicz. Diagnostic aspects of organophosphate poisoning. Toxicology 2005, 214, 182.
- 25
E.M. Jakubowski,
J.M. McGuire,
R.A. Evans, et al. Quantitation of fluoride ion released sarin in red blood cell samples by gas chromatography-chemical ionization mass spectrometry using isotope dilution and large-volume injection. J. Anal. Toxicol. 2004, 28, 357.
- 26
D. Wessels,
D.B. Barr,
P. Mendola. Use of biomarkers to indicate exposure of children to organophosphate pesticides: implications for a longitudinal study of children's environmental health. Environ. Health Perspect. 2003, 111, 1939.
- 27
M.J. van der Schans,
A. Fidder,
D. van Oeveren,
A.G. Hulst,
D. Noort. Verification of exposure to cholinesterase inhibitors: generic detection of OPCW Schedule 1 nerve agent adducts to human butyrylcholinesterase. J. Anal. Toxicol. 2008, 32, 125.
- 28
C.E. Degenhardt,
K. Pleijsier,
M.J. van der Schans,
J.P. Langenberg,
K.E. Preston,
M.I. Solano,
V.L. Maggio,
J.R. Barr. Improvements of the fluoride reactivation method for the verification of nerve agent exposure. J. Anal. Toxicol. 2004, 28, 364.
- 29
M. Lotti. Cholinesterase inhibition: Complexities in interpretation. Clin. Chem. 1995, 41, 1814.
- 30
A.R. Main. Mode of action of anticholinesterases. Pharmac. Ther. 1979, 6, 579.
- 31
J.R. Haigh,
L.J. Lefkowitz,
B.R. Capacio,
B.P. Doctor,
R.K. Gordon. Advantages of the WRAIR whole blood cholinesterase assay: comparative analysis to the micro-Ellman, Test-mate ChE, and Michel (DeltapH) assays. Chem. Biol. Interact. 2008, 175, 417.
- 32
F. Hernandez,
J.V. Sancho,
O.J. Pozo. Critical review of the application of liquid chromatography/mass spectrometry to the determination of pesticide residues in biological samples. Anal. Bioana.l Chem. 2005, 382, 934.
- 33
D.B. Barr,
L.L. Needham. Analytical methods for biological monitoring of exposure to pesticides: A review. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2002, 778, 5.
- 34
M.G. Margariti,
A.K. Tsakalof,
A.M. Tsatsakis. Analytical methods of biological monitoring for exposure to pesticides: Recent update. Ther. Drug Monit. 2007, 29, 150.
- 35
J. Jarv. Stereochemical aspects of cholinesterase catalysis. Bioorg. Chem. 1984, 12, 259.
- 36
D.E. Arrieta,
S.A. McCurdy,
J.D. Henderson,
L.J. Lefkowitz,
R. Reitstetter,
B.W. Wilson. Normal range of human red blood cell acetylcholinesterase activity. Drug Chem. Toxicol. 2009, 32, 182.
- 37
J.L. Sporty,
S.W. Lemire,
E.M. Jakubowski,
J.A. Renner,
R.A. Evans,
R.F. Williams,
J.G. Schmidt,
M.J. van der Schans,
D. Noort,
R.C. Johnson. Immunomagnetic separation and quantification of butyrylcholinesterase nerve agent adducts in human serum. Anal. Chem. 2010, 82, 6593.
- 38
M. Whittaker. Plasma cholinesterase variants and the anaesthetist. Anaesthesia 1980, 35, 174.
- 39
M.J. van der Schans,
M. Polhuijs,
C. Van Dijk,
C.E. Degenhardt,
K. Pleijsier,
J.P. Langenberg,
H.P. Benschop. Retrospective detection of exposure to nerve agents: analysis of phosphofluoridates originating from fluoride-induced reactivation of phosphylated BuChE. Arch. Toxicol. 2004, 78, 508.
- 40
P. Masson,
O. Lockridge. Butyrylcholinesterase for protection from organophosphorus poisons: Catalytic complexities and hysteretic behavior. Arch. Biochem. Biophys. 2010, 494, 107.
- 41
C.F. Bartels,
W. Xie,
A.K. Miller-Lindholm,
L.M. Schopfer,
O. Lockridge. Determination of the DNA sequences of acetylcholinesterase and butyrylcholinesterase from cat and demonstration of the existence of both in cat plasma. Biochem. Pharmacol. 2000, 60, 479.
- 42
D. Du,
J. Wang,
J.N. Smith,
C. Timchalk,
Y. Lin. Biomonitoring of organophosphorus agent exposure by reactivation of cholinesterase enzyme based on carbon nanotube-enhanced flow-injection amperometric detection. Anal. Chem. 2009, 81, 9314.
- 43
P.W. Taylor,
B.J. Lukey,
C.R. Clark,
R.B. Lee,
R.R. Roussel. Field verification of Test-mate ChE. Mil. Med. 2003, 168, 314.
- 44
W.E. Steiner,
S.J. Klopsch,
W.A. English,
B.H. Clowers,
H.H. Hill. Detection of a chemical warfare agent simulant in various aerosol matrixes by ion mobility time-of-flight mass spectrometry. Anal. Chem. 2005, 77, 4792.
- 45
R.W. Read,
J.R. Riches,
J.A. Stevens,
S.J. Stubbs,
R.M. Black. Biomarkers of organophosphorus nerve agent exposure: Comparison of phosphylated butyrylcholinesterase and phosphylated albumin after oxime therapy. Arch. Toxicol. 2010, 84, 25.
- 46
M.I. Solano,
J.D. Thomas,
J.T. Taylor, et al. Quantification of nerve agent VX-butyrylcholinesterase adduct biomarker from an accidental exposure. J. Anal. Toxicol. 2008, 32, 68.
- 47
A. Fidder,
A.G. Hulst,
D. Noort,
R. de Ruiter,
M.J. van der Schans,
H.P. Benschop,
J.P. Langenberg. Retrospective detection of exposure to organophosphorus anti-cholinesterases: mass spectrometric analysis of phosphylated human butyrylcholinesterase. Chem. Res. Toxicol. 2002, 15, 582.
- 48
B. Li,
I. Ricordel,
L.M. Schopfer,
F. Baud,
B. Megarbane,
P. Masson,
O. Lockridge. Dichlorvos, chlorpyrifos oxon, and aldicarb adducts of butyrylcholinesterase detected by mass spectrometry in human plasma following deliberate overdose. J. Appl. Toxicol. 2010, 30, 559.
- 49
J.M. McGuire,
J.T. Taylor,
C.E. Byers,
E.M. Jakubowski,
S.M. Thomson. Determination of VX-G analogue in red blood cells via gas chromatography-tandem mass spectrometry following an accidental exposure to VX. J. Anal. Toxicol. 2008, 32, 73.
- 50
Y. Matsuda,
M. Nagao,
T. Takatori,
H. Niijima,
M. Nakajima,
H. Iwase,
M. Kobayashi,
K. Iwadate. Detection of the sarin hydrolysis product in formalin-fixed brain tissues of victims of the Tokyo subway terrorist attack. Toxicol. Appl. Pharmacol. 1998, 150, 310.
- 51
B. Li,
I. Ricordel,
L.M. Schopfer,
F. Baud,
B. Megarbane,
F. Nachon,
P. Masson,
O. Lockridge. Detection of adducts on tyrosine 411 of albumin in humans poisoned by dichlorvos. Toxicol. Sci. 2010, 116, 23.
- 52
H. Li,
I. Ricordel,
L. Tong,
L.M. Schopfer,
F. Baud,
B. Megarbane,
E. Maury,
P. Masson,
O. Lockridge. Carbofuran poisoning detected by mass spectrometry of butyrylcholinesterase adduct in human serum. J. Appl. Toxicol. 2009, 29, 149.
- 53
C.M. Thompson,
J.M. Prins,
K.M. George. Mass spectrometric analyses of organophosphate insecticide oxon protein adducts. Environ. Health Perspect. 2010, 118, 11.
- 54
E. Heilbronn. Action of fluoride on cholinesterase. II. In vitro reactivation of cholinesterases inhibited by organophosphorous compounds. Biochem. Pharmacol. 1965, 14, 1363.
- 55
E. Heilbronn. The effect of sodium fluoride on sarin inhibited blood cholinesterases. Acta Chem. Scand. 1964, 18, 2410.
- 56
B. Clothier,
M.K. Johnson. Rapid aging of neurotoxic esterase after inhibition by di-isopropyl phosphorofluoridate. Biochem. J. 1979, 177, 549.
- 57
A. Shafferman,
A. Ordentlich,
D. Barak,
D. Stein,
N. Ariel,
B. Velan. Aging of phosphylated human acetylcholinesterase: Catalytic processes mediated by aromatic and polar residues of the active centre. Biochem. J. 1996, 318, 833.
- 58
C. Viragh,
R. Akhmetshin,
I.M. Kovach,
C. Broomfield. Unique push-pull mechanism of dealkylation in soman-inhibited cholinesterases. Biochemistry 1997, 36, 8243.
- 59
L.P. de Jong,
C. van Dijk. Formation of soman (1,2,2-trimethylpropyl methylphosphonofluoridate) via fluoride-induced reactivation of soman-inhibited aliesterase in rat plasma. Biochem. Pharmacol. 1984, 33, 663.
- 60
D. Milatovic,
M.K. Johnson. Reactivation of phosphorodiamidated acetylcholinesterase and neuropathy target esterase by treatment of inhibited enzyme with potassium fluoride. Chem. Biol. Interact. 1993, 87, 425.
- 61
E.M. Jakubowski,
L.S. Heykamp,
H.D. Durst,
S.A. Thomson. Preliminary studes in the formation of ethyl methylphosphonofluoridate from rat and human serum exposed to VX and treated with fluoride ion. Anal. Lett. 2001, 34, 727.
- 62
T.K. Adams,
B.R. Capacio,
J.R. Smith,
C.E. Whalley,
W.D. Korte. The application of the fluoride reactivation process to the detection of sarin and soman nerve agent exposures in biological samples. Drug Chem. Toxicol. 2004, 27, 77.
- 63
P. Masson,
P.L. Fortier,
C. Albaret,
M.T. Froment,
C.F. Bartels,
O. Lockridge. Aging of di-isopropyl-phosphorylated human butyrylcholinesterase. Biochem. J. 1997, 327, 601.
- 64
K.E. Holland,
M.I. Solano,
R.C. Johnson,
V.L. Maggio,
J.R. Barr. Modifications to the organophosphorus nerve agent-protein adduct refluoridation method for retrospective analysis of nerve agent exposures. J. Anal. Toxicol. 2008, 32, 116.
- 65
C.E. Byers,
J.M. McGuire,
S.W. Hulet,
D.C. Burnett,
B.I. Gaviola,
E.M. Jakubowski,
S.A. Thomson. Gas chromatography-tandem mass spectrometry analysis of red blood cells from Gottingen minipig following whole-body vapor exposure to VX. J. Anal. Toxicol. 2008, 32, 57.
- 66
H.P. Benschop,
J.P. Langenberg,
M. Polhuijs. Retrospective detection of trace exposure to nerve agents in the rhesus monkey. Toxicol. Lett. 1998, 95, 188.
- 67
B.J. Benton,
J.M. McGuire,
D.R. Sommerville,
P.A. Dabisch,
E.M. Jakubowski,
K.L. Matson,
R.J. Mioduszewski,
S.A. Thomson,
C.L. Crouse. Effects of whole-body VX vapor exposure on lethality in rats. Inhal. Toxicol. 2006, 18, 1091.
- 68
R.F. Genovese,
B.J. Benton,
E.H. Lee,
S.J. Shippee,
E.M. Jakubowski. Behavioral and biochemical evaluation of sub-lethal inhalation exposure to VX in rats. Toxicology 2007, 232, 109.
- 69
R.F. Genovese,
B.J. Benton,
S.J. Shippee,
E.M. Jakubowski,
J.C. Bonnell. Effects of low-level inhalation exposure to cyclosarin on learned behaviors in Sprague–Dawley rats. J. Toxicol. Environ. Health A 2006, 69, 2167.
- 70
P.A. Dabisch,
E.A. Davis,
J.A. Renner,
E.M. Jakubowski,
R.J. Mioduszewski,
S.A. Thomson. Biomarkers of low-level exposure to soman vapor: comparison of fluoride regeneration to acetylcholinesterase inhibition. Inhal. Toxicol. 2008, 20, 149.
- 71
J.A. Renner,
P.A. Dabisch,
R.A. Evans,
J.M. McGuire,
A.L. Totura,
E.M. Jakubowski,
S.A. Thomson. Validation and application of a GC-MS method for determining soman concentration in rat plasma following low-level vapor exposure. J. Anal. Toxicol. 2008, 32, 92.
- 72
M. Nagao,
T. Takatori,
Y. Maeno,
I. Isobe,
H. Koyama,
T. Tsuchimochi. Development of forensic diagnosis of acute sarin poisoning. Leg. Med. (Tokyo) 2003, 5 , S34.
- 73
D. Noort,
A. Fidder,
M.J. van der Schans,
A.G. Hulst. Verification of exposure to organophosphates: Generic mass spectrometric method for detection of human butyrylcholinesterase adducts. Anal. Chem. 2006, 78, 6640.
- 74
J. Carol-Visser,
M. van der Schans,
A. Fidder,
A.G. Hulst,
B.L. van Baar,
H. Irth,
D. Noort. Development of an automated on-line pepsin digestion-liquid chromatography-tandem mass spectrometry configuration for the rapid analysis of protein adducts of chemical warfare agents. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2008, 870, 91.
- 75
J. Sun,
B.C. Lynn. Development of a MALDI-TOF-MS method to identify and quantify butyrylcholinesterase inhibition resulting from exposure to organophosphate and carbamate pesticides. J. Am. Soc. Mass Spectrom. 2007, 18, 698.
- 76
K. Tsuge,
Y. Seto. Detection of human butyrylcholinesterase-nerve gas adducts by liquid chromatography-mass spectrometric analysis after in gel chymotryptic digestion. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2006, 838, 21.
- 77
V. Simeon,
E. Reiner,
C.A. Vernon. Effect of temperature and pH on carbamoylation and phosphorylation of serum cholinesterases. Theoretical interpretation of activation energies in complex reactions. Biochem. J. 1972, 130, 515.
- 78
C. Winder,
J.C. Balouet. The toxicity of commercial jet oils. Environ. Res. 2002, 89, 146.
- 79
D. Henschler. Tricresylphosphate poisoning; experimental clarification of problems of etiology and pathogenesis. Klin. Wochenschr. 1958, 36, 663.
- 80
M. Eto,
J.E. Casida,
T. Eto. Hydroxylation and cyclization reactions involved in the metabolism of tri-o-cresyl phosphate. Biochem. Pharmacol. 1962, 11, 337.
- 81
J.E. Casida,
M. Eto,
R.L. Baron. Biological activity of a trio-cresyl phosphate metabolite. Nature 1961, 191, 1396.
- 82
R.L. Baron,
D.R. Bennett,
J.E. Casida. Neurotoxic syndrome produced in chickens by a cyclic phosphate metabolite of tri-o-cresyl phosphate--a clinical and pathological study. Brit. J. Pharmacol. Chemother. 1962, 18, 465.
- 83
E. Carletti,
L.M. Schopfer,
J.P. Colletier,
M.T. Froment,
F. Nachon,
M. Weik,
O. Lockridge,
P. Masson. Reaction of cresyl saligenin phosphate, the organophosphorus implicated in the aerotoxic syndrome, with human cholinesterases: Mechanistic studies employing kinetics, mass spectrometry and x-ray structure analysis. Chem. Res. Toxicol. 2011, 24, 797.
- 84
L.M. Schopfer,
C.E. Furlong,
O. Lockridge. Development of diagnostics in the search for an explanation of aerotoxic syndrome. Anal. Biochem. 2010, 404, 64.
- 85
M.S. Liyasova,
B. Li,
L.M. Schopfer,
F. Nachon,
P. Masson,
C.E. Furlong,
O. Lockridge. Exposure to tri-o-cresyl phosphate in jet airplane passengers. Toxicol. Appl. Pharmacol. 2011, 256, 337.
- 86
L.L. Jennings,
M. Malecki,
E.A. Komives,
P. Taylor. Direct analysis of the kinetic profiles of organophosphate-acetylcholinesterase adducts by MALDI-TOF mass spectrometry. Biochemistry 2003, 42, 11083.
- 87
R.S. Spaulding,
K.M. George,
C.M. Thompson. Analysis and sequencing of the active-site peptide from native and organophosphate-inactivated acetylcholinesterase by electrospray ionization, quadrupole/time-of-flight (QTOF) mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2006, 830, 105.
- 88
T.J. Kropp,
R.J. Richardson. Aging of mipafox-inhibited human acetylcholinesterase proceeds by displacement of both isopropylamine groups to yield a phosphate adduct. Chem. Res. Toxicol. 2006, 19, 334.
- 89
F. Sanger. Amino-acid sequences in the active centers of certain enzymes. Proc. Chem. Soc. 1963, 5, 76.
- 90
G.E. Means,
H.L. Wu. The reactive tyrosine residue of human serum albumin: characterization of its reaction with diisopropylfluorophosphate. Arch. Biochem. Biophys. 1979, 194, 526.
- 91
L.M. Schopfer,
M.M. Champion,
N. Tamblyn,
C.M. Thompson,
O. Lockridge. Characteristic mass spectral fragments of the organophosphorus agent FP-biotin and FP-biotinylated peptides from trypsin and bovine albumin (Tyr410). Anal. Biochem. 2005, 345, 122.
- 92
B. Li,
L.M. Schopfer,
S.H. Hinrichs,
P. Masson,
O. Lockridge. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry assay for organophosphorus toxicants bound to human albumin at Tyr411. Anal. Biochem. 2007, 361, 263.
- 93
L.M. Schopfer,
H. Grigoryan,
B. Li,
F. Nachon,
P. Masson,
O. Lockridge. Mass spectral characterization of organophosphate-labeled, tyrosine-containing peptides: characteristic mass fragments and a new binding motif for organophosphates. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2010, 878, 1297.
- 94
S.J. Ding,
J. Carr,
J.E. Carlson, et al. Five tyrosines and two serines in human albumin are labeled by the organophosphorus agent FP-biotin. Chem. Res. Toxicol. 2008, 21, 1787. PMCID:2646670.
- 95
R.M. Black,
J.M. Harrison,
R.W. Read. The interaction of sarin and soman with plasma proteins: The identification of a novel phosphonylation site. Arch. Toxicol. 1999, 73, 123.
- 96
N.H. Williams,
J.M. Harrison,
R.W. Read,
R.M. Black. Phosphylated tyrosine in albumin as a biomarker of exposure to organophosphorus nerve agents. Arch. Toxicol. 2007, 81, 627.
- 97
B. Li,
F. Nachon,
M.T. Froment,
L. Verdier,
J.C. Debouzy,
B. Brasme,
E. Gillon,
L.M. Schopfer,
O. Lockridge,
P. Masson. Binding and hydrolysis of soman by human serum albumin. Chem. Res. Toxicol. 2008, 21, 421.
- 98
M.H. Tarhoni,
T. Lister,
D.E. Ray,
W.G. Carter. Albumin binding as a potential biomarker of exposure to moderately low levels of organophosphorus pesticides. Biomarkers 2008, 13, 343.
- 99
H. John,
F. Breyer,
J.O. Thumfart,
H. Hochstetter,
H. Thiermann. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for detection and identification of albumin phosphylation by organophosphorus pesticides and G- and V-type nerve agents. Anal. Bioanal. Chem. 2010, 398, 2677.
- 100
D. Noort,
A.G. Hulst,
A. van Zuylen,
E. van Rijssel,
M.J. van der Schans. Covalent binding of organophosphorothioates to albumin: a new perspective for OP-pesticide biomonitoring? Arch. Toxicol. 2009, 83, 1031.
- 101
K. Panigrahi,
M. Eggen,
J.H. Maeng,
Q. Shen,
D.B. Berkowitz. The alpha,alpha-difluorinated phosphonate L-pSer-analogue: An accessible chemical tool for studying kinase-dependent signal transduction. Chem. Biol. 2009, 16, 928.