Derivatization procedures and their analytical performances for HPLC determination in bioanalysis
Corresponding Author
Victor David
Faculty of Chemistry, Department of Analytical Chemistry, University of Bucharest, Bucharest, Romania
Correspondence
Victor David, University of Bucharest, Faculty of Chemistry, Department of Analytical Chemistry, Sos. Panduri, no. 90, Bucharest 050663, Romania.
Email: [email protected]; [email protected]
Search for more papers by this authorToma Galaon
National Research and Development Institute for Industrial Ecology – ECOIND, Bucharest-6, Romania
Search for more papers by this authorCorresponding Author
Victor David
Faculty of Chemistry, Department of Analytical Chemistry, University of Bucharest, Bucharest, Romania
Correspondence
Victor David, University of Bucharest, Faculty of Chemistry, Department of Analytical Chemistry, Sos. Panduri, no. 90, Bucharest 050663, Romania.
Email: [email protected]; [email protected]
Search for more papers by this authorToma Galaon
National Research and Development Institute for Industrial Ecology – ECOIND, Bucharest-6, Romania
Search for more papers by this authorAbstract
Derivatization, or chemical structure modification, is often used in bioanalysis performed by liquid chromatography technique in order to enhance detectability or to improve the chromatographic performance for the target analytes. The derivatization process is discussed according to the analytical procedure used to achieve the reaction between the reagent and the target compounds (containing hydroxyl, thiol, amino, carbonyl and carboxyl as the main functional groups involved in derivatization). Important procedures for derivatization used in bioanalysis are in situ or based on extraction processes (liquid–liquid, solid-phase and related techniques) applied to the biomatrix. In the review, chiral, isotope-labeling, hydrophobicity-tailored and post-column derivatizations are also included, based on representative publications in the literature during the last two decades. Examples of derivatization reagents and brief reaction conditions are included, together with some bioanalytical applications and performances (chromatographic conditions, detection limit, stability and sample biomatrix).
CONFLICT OF INTEREST
The authors have no conflicts of interest to declare.
REFERENCES
- Ahmed, S., & Atia, N. N. (2019). Controlled microwave derivatization reaction for reproducible trace analysis of budesonide in human plasma. Analytica Chimica Acta, 43, 2649–2657. https://doi.org/10.1016/j.aca.2018.09.059
- Annenkov, V. V., Verkhozina, O. N., Shishlyannikova, T. A., & Danilovtseva, E. N. (2015). Application of 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole in analysis: Fluorescent dyes and unexpected reaction with tertiary amines. Analytical Biochemistry, 486, 5–13. https://doi.org/10.1016/j.ab.2015.06.025
- Atapattu, S. N., & Rosenfeld, J. M. (2013). Solid phase analytical derivatization as a sample preparation method. Journal of Chromatography a, 1296, 204–213. https://doi.org/10.1016/j.chroma.2013.03.020
- Atapattu, S. N., & Rosenfeld, J. M. (2018). Solid phase analytical derivatization, in reference module in chemistry, molecular sciences and chemical engineering. Amsterdam: Elsevier. https://doi.org/10.1016/B978-0-12-409547-2.14248-9
- Atapattu, S. N., & Rosenfeld, J. M. (2019). Micro scale analytical derivatizations on solid phase. Trends in Analytical Chemistry, 113, 351–356. https://doi.org/10.1016/j.trac.2018.10.028
- Baghdady, Y. Z., & Schug, K. A. (2016). Review of in situ derivatization techniques for enhanced bioanalysis using liquid chromatography with mass spectrometry. Journal of Separation Science, 39, 102–114. https://doi.org/10.1002/jssc.201501003
- Balázs, M., Dobi, Z., Mészáros, K., Szabó, E., Márta, Z., Imre, T., & Szabó, P. T. (2017). Charged derivatization and on-line solid phase extraction to measure extremely low cortisol and cortisone levels in human saliva with liquid chromatography–tandem mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 140, 223–231. https://doi.org/10.1016/j.jpba.2017.03.028
- Banos, C. E., & Silva, M. (2010). Liquid chromatography–tandem mass spectrometry for the determination of low-molecular mass aldehydes in human urine. Journal of Chromatography B, 878, 653–658. https://doi.org/10.1016/j.jchromb.2010.01.024
- Batra, B., & Bhushan, R. (2018a). Bioassay, determination and separation of enantiomers of atenolol by direct and indirect approaches using liquid chromatography: A review. Biomedical Chromatography, 32, e4090. https://doi.org/10.1002/bmc.4090
- Batra, B., & Bhushan, R. (2018b). Methods and approaches for determination and enantioseparation of (RS)-propranolol. Biomedical Chromatography, 32, e4370. https://doi.org/10.1002/bmc.4370
- Berna, M. J., Ackermann, B. L., & Murphy, A. T. (2004). High-throughput chromatographic approaches to liquid chromatographic/tandem mass spectrometric bioanalysis to support drug discovery and development. Analytica Chimica Acta, 509, 1–9. https://doi.org/10.1016/j.aca.2003.12.023
- Bhushan, R. (2011). Enantiomeric purity of chiral derivatizing reagents for enantioresolution. Bioanalysis, 3, 2057–2060. https://doi.org/10.4155/bio.11.211
- Bian, X., Sun, B., Zheng, P., Li, N., & Wu, J.-L. (2017). Derivatization enhanced separation and sensitivity of long chain-free fatty acids: Application to asthma using targeted and non-targeted liquid chromatography–mass spectrometry approach. Analytica Chimica Acta, 989, 59–70. https://doi.org/10.1016/j.aca.2017.08.009
- Borden, S. A., Palaty, J., Termopoli, V., Famiglini, G., Cappiello, A., Gill, C. G., & Palma, P. (2020). Mass spectrometry analysis of drugs of abuse: Challenges and emerging strategies. Mass Spectrometry Reviews, 39, 703–744. https://doi.org/10.1002/mas.21624
- Cardinael, P., Casabianca, H., Peulon-Agasse, V., & Berthod, A. (2015). Sample Derivatization in separation science. In J. L. Anderson, A. Berthod, V. Pino Estévez, & A. M. Stalcup (Eds.), Analytical separation science ( 1st ed., Vol. 5). Weinheim, Germany: Wiley-VCH. https://doi.org/10.1002/9783527678129.assep063
10.1002/9783527678129.assep063 Google Scholar
- Chanthai, S., & Tessiri, T. (2012). Application of HPLC analysis of medroxyprogesterone acetate in human plasma. In L. Azevedo Calderon (Ed.), Chromatography–The most versatile method of chemical analysis. London: IntechOpen. https://doi.org/10.5772/48369
- Chen, B., Yu, H.-L., Liu, C.-C., Liang, L.-H., Li, X.-H., Li, S.-S., … Yang, Y. (2019). A sensitive quantification approach for detection of HETE-CP adduct after benzyl chloroformate derivatization using ultra-high-pressure liquid chromatography tandem mass spectrometry. Analytical and Bioanalytical Chemistry, 411, 3405–3415. https://doi.org/10.1007/s00216-019-01820-3
- Chen, D., Ding, J., Wu, M.-K., Zhang, T.-Y., Qi, C.-B., & Feng, Y.-Q. (2017). A liquid chromatography–mass spectrometry method based on postcolumn derivatization for automated analysis of urinary hexanal and heptanal. Journal of Chromatography a, 1493, 57–63. https://doi.org/10.1016/j.chroma.2017.02.071
- Chen, X.-F., Wu, H.-T., Tan, G.-G., Zhu, Z.-Y., & Chai, Y.-C. (2011). Liquid chromatography coupled with time-of-flight and ion trap mass spectrometry for qualitative analysis of herbal medicines. Journal of Pharmaceutical Analysis, 1, 235–245. https://doi.org/10.1016/j.jpha.2011.09.008
- Chen, Z., Gao, Y., & Zhong, D. (2020). Technologies to improve the sensitivity of existing chromatographic methods used for bioanalytical studies. Biomedical Chromatography, 34, e4798. https://doi.org/10.1002/bmc.4798
- Chen, Z., Gao, Z., Wu, Y., Shrestha, R., Imai, H., Uemura, N., … Hui, S. P. (2019). Development of a simultaneous quantitation for short-, medium-, long-, and very long-chain fatty acids in human plasma by 2-nitrophenylhydrazinederivatization and liquid chromatography–tandem mass spectrometry. Journal of Chromatography B, 1126-1127, 121771. https://doi.org/10.1016/j.jchromb.2019.121771
- Cheng, Q.-Y., Xiong, J., Huang, W., Ma, Q., Ci, W., Feng, Y.-Q., & Yuan, B.-F. (2015). Sensitive determination of onco-metabolites of d- and l-2-hydroxyglutarate enantiomers by chiral derivatization combined with liquid chromatography/mass spectrometry analysis. Scientific Reports, 5, 15217. https://doi.org/10.1038/srep15217
- Cheng, Q.-Y., Xiong, J., Wang, F., Yuan, B.-F., & Feng, Y.-Q. (2018). Chiral derivatization coupled with liquid chromatography/mass spectrometry for determining ketone metabolites of hydroxybutyrate enantiomers. Chinese Chemical Letters, 29, 115–118. https://doi.org/10.1016/j.cclet.2017.06.009
- Cimlova, J., Kružberska, P., Svagera, Z., Husek, P., & Simek, P. (2012). In situ derivatization–liquid liquid extraction as a sample preparation strategy for the determination of urinary biomarker prolyl-4-hydroxyproline by liquid chromatography–tandem mass spectrometry. Journal of Separation Science, 47, 294–302. https://doi.org/10.1002/jms.2952
- Cirigliano, A.-M., & Cabrera, G. M. (2020). Post-column in-source derivatisation in LC–MS: A tool for natural products characterisation and metabolomics. Phytochemical Analysis, 31, 606–615. https://doi.org/10.1002/pca.2926
- Dar, A. A., Sangwan, P. L., & Kumar, A. (2020). Chromatography: An important tool for drug discovery. Journal of Separation Science, 43, 105–119. https://doi.org/10.1002/jssc.201900656
- Dator, R. P., Solivio, M. J., Villalta, P. W., & Balbo, S. (2019). Bioanalytical and mass spectrometric methods for aldehyde profiling in biological fluids. Toxics, 7, 32. https://doi.org/10.3390/toxics7020032
- David, V., Barcutean, C., Sora, I., & Medvedovici, A. (2005). Determination of metformin in plasma samples by HPLC–DAD based on plasma derivatization and precipitation with acetic anhydride. Revue Roumaine de Chimie, 50, 269–276.
- Deng, P., Zhan, Y., Chen, X., & Zhong, D. (2012). Derivatization methods for quantitative bioanalysis by LC–MS/MS. Bioanalysis, 4, 49–69. https://doi.org/10.4155/bio.11.298
- Denver, N., Khan, S., Stasinopoulos, I., Church, C., Homer, N. Z. M., MacLean, M. R., & Andrew, R. (2019). Derivatization enhances analysis of estrogens and their bioactive metabolites in human plasma by liquid chromatography tandem mass spectrometry. Analytica Chimica Acta, 1054, 84–94. https://doi.org/10.1016/j.aca.2018.12.023
- Donegatti, T. A., Lobato, A., Gonçalves, L. M., & Pereira, E. A. (2019). Cyclohexane-1,3-dione as a derivatizing agent for the analysis of aldehydes by micelar electrokinetic chromatography with diode array detection. Electrophoresis, 40, 2929–2935. https://doi.org/10.1002/elps.201900171
- Dong, J.-Z., & Moldoveanu, S. C. (2004). Gas chromatography–mass spectrometry of carbonyl compounds in cigarette mainstream smoke after derivatization with 2,4-dinitrophenylhydrazine. Journal of Chromatography a, 1027, 25–35. https://doi.org/10.1016/j.chroma.2003.08.104
- Durairaj, A., & Limbach, P. A. (2008). Matrix-assisted laser desorption/ionization mass spectrometry screening for pseudouridine in mixtures of small RNAs by chemical derivatization, RNase digestion and signature products. Rapid Communications in Mass Spectrometry, 22, 3727–3734. https://doi.org/10.1002/rcm.3789
- Eggink, M., Wijtmans, M., Kretschmer, A., Kool, J., Lingeman, H., de Esch, I. J. P., … Irth, H. (2010). Targeted LC–MS derivatization for aldehydes and carboxylic acids with a new derivatization agent 4-APEBA. Analytical and Bioanalytical Chemistry, 397, 665–675. https://doi.org/10.1007/s00216-010-3575-1
- Ehrsson, H., & Wallin, I. (2003). Liquid chromatographic determination of oxaliplatin in blood using post-column derivatization in a microwave field followed by photometric detection. Journal of Chromatography B, 795, 291–294. https://doi.org/10.1016/S1570-0232(03)00590-7
- El-Maghrabey, M. H., Kishikawa, N., & Kuroda, N. (2020). Current trends in isotope-coded derivatization liquid chromatographic–mass spectrometric analyses with special emphasis on their biomedical application. Biomedical Chromatography, 34, e4756. https://doi.org/10.1002/bmc.4756
- Emara, S. (1998). Development of highly sensitive and specific HPLC assay for plasma morphine using direct injection technique and post-column derivatization. Biomedical Chromatography, 12, 15–20.
10.1002/(SICI)1099-0801(199801/02)12:1<15::AID-BMC713>3.0.CO;2-R CASPubMedWeb of Science®Google Scholar
- Fang, W.-L., Xia, L.-J., Huang, X., Guo, X.-F., Ding, J., Wang, H., & Feng, Y.-Q. (2018). Highly sensitive determination for catecholamines using boronate affinity polymer monolith microextraction with in-situ derivatization and HPLC fluorescence detection. Chromatographia, 81, 1381–1389. https://doi.org/10.1007/s10337-018-3592-3
- Fegas, R., Adoui, A., Righezza, M., & Hamdi, A. (2008). Chromatographic separation of enantiomers acids using quinine as chiral counter-ion in mobile phase. Asian Journal of Chemistry, 20, 125–131.
- Fourel, I., Benoit, E., & Lattard, V. (2020). Enantiomeric fraction evaluation of the four stereoisomers of difethialone in biological matrices of rat by two enantioselective liquid chromatography tandem mass spectrometry methods: Chiral stationary phase or derivatization. Journal of Chromatography a, 1618, 460848. https://doi.org/10.1016/j.chroma.2019.460848
- Fragkaki, A. G., Petropoulou, G., Athanasiadou, I., Kiousi, P., Kioukia-Fougia, N., Archontaki, H., … Angelis, Y. S. (2020). Determination of anabolic androgenic steroids as imidazole carbamate derivatives in human urine using liquid chromatography–tandem mass spectrometry. Journal of Separation Science, 43, 2154–2161. https://doi.org/10.1002/jssc.202000036
- Francisco, K. C. A., Brandao, P. F., Ramos, R. M., Goncalves, L. M., Cardoso, A. A., & Rodrigues, J. A. (2020). Salting-out assisted liquid–liquid extraction with dansyl chloride for the determination of biogenic amines in food. International Journal of Food Science and Technology, 55, 248–258. https://doi.org/10.1111/ijfs.14300
- Franklin, E. T., & Xia, Y. (2020). Structural elucidation of triacylglycerol using online acetone Paternò–Büchi reaction coupled with reversed-phase liquid chromatography mass spectrometry. Analyst, 145, 6532–6540. https://doi.org/10.1039/D0AN01353F
- Fritzsche, S., Billig, S., Rynek, R., Abburi, R., Tarakhovskaya, E., Leuner, O., … Birkemeyer, C. (2018). Derivatization of methylglyoxal for LC–ESI–MS analysis—stability and relative sensitivity of different derivatives. Molecules, 23, 2994. https://doi.org/10.3390/molecules23112994
- Fu, H., Zhang, Q. L., Huang, X. W., Ma, Z. H., Zheng, X. L., Li, S. L., … Liu, J. (2020). A rapid and convenient derivatization method for quantitation of short-chain fatty acids in human feces by ultra-performance liquid chromatography/tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 34, e8730. https://doi.org/10.1002/rcm.8730
- Fujii, S., Maeda, T., Noge, I., Kitagawa, Y., Todoroki, K., Inoue, K., … Toyo'oka, T. (2014). Determination of acetone in saliva by reversed-phase liquid chromatography with fluorescence detection and the monitoring of diabetes mellitus patients with ketoacidosis. Clinica Chimica Acta, 430, 140–144. https://doi.org/10.1016/j.cca.2014.01.006
- Garcia-Borregon, P. F., Lores, M., & Cela, R. (2000). Analysis of barbiturates by micro-high-performance liquid-chromatography with post-column photochemical derivatization. Journal of Chromatography a, 870, 39–44. https://doi.org/10.1016/S0021-9673(99)01227-3
- Gomez-Gomez, A., Soldevila, A., Pizarro, N., Andreu-Fernandez, V., & Pozo, O. J. (2019). Improving liquid chromatography–tandem mass spectrometrydetermination of polycarboxylic acids in human urine by chemicalderivatization. Comparison of o-benzyl hydroxylamine and 2-picolylamine. Journal of Pharmaceutical and Biomedical Analysis, 164, 382–394. https://doi.org/10.1016/j.jpba.2018.10.055
- González, O., Blanco, M. E., Iriarte, G., Bartolome, L., Maguregui, M. I., & Alonso, R. M. (2014). Bioanalytical chromatographic method validation according to current regulations, with a special focus on the non-well defined parameters limit of quantification, robustness and matrix effect. Journal of Chromatography a, 1353, 10–27. https://doi.org/10.1016/j.chroma.2014.03.077
- Goodwin, K. J., Gangl, E., Sarkar, U., Pop-Damkov, P., Jones, N., Borodovsky, A., … Fretland, A. J. (2019). Development of a quantification method for adenosine in tumors by LC–MS/MS with dansyl chloride derivatization. Analytical Biochemistry, 568, 78–88. https://doi.org/10.1016/j.ab.2018.11.004
- Görög, S., & Gazdag, M. (1994). Enantiomeric derivatization for biomedical chromatography. Journal of Chromatography B: Biomedical Sciences and Applications, 659, 51–84. https://doi.org/10.1016/0378-4347(94)00124-3
- Guan, X., Rubin, E., & Anni, H. (2012). An optimized method for the measurement of acetaldehyde by high-performance liquid chromatography. Alcoholism: Clinical and Experimental Research, 36, 398–405. https://doi.org/10.1111/j.1530-0277.2011.01612.x
- Han, J., Gagnon, S., Eckle, T., & Borchers, C. H. (2013). Metabolomic analysis of key central carbon metabolism carboxylic acids as their 3-nitrophenylhydrazones by UPLC/ESI–MS. Electrophoresis, 34, 2891–2900. https://doi.org/10.1002/elps.201200601
- Han, Y., Jin, M.-N., Xu, C.-Y., Qian, Q., Nan, J., Jin, T., & Min, J. Z. (2019). Evaluation of chiral separation efficiency of a novel OTPTHE derivatization reagent: Applications to liquid chromatographic determination of dl-serine in human plasma. Chirality, 31, 1043–1052. https://doi.org/10.1002/chir.23133
- Hancu, G., Lupu, D., Milan, A., Budau, M., & Barabas-Hajdu, E. (2020). Enantioselective analysis of venlafaxine and its active metabolites: A review on the separation methodologies. Biomedical Chromatography, e4874. https://doi.org/10.1002/bmc.4874
- Hansen, F., Øiestad, E. L., & Pedersen-Bjergaard, S. (2020). Bioanalysis of pharmaceuticals using liquid-phase microextraction combined with liquid chromatography–mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 189, 113446. https://doi.org/10.1016/j.jpba.2020.113446
- Hansen, R. E., Østergaard, H., Nørgaard, P., & Winther, J. R. (2007). Quantification of protein thiols and dithiols in the picomolar range using sodium borohydride and 4,4′-dithiodipyridine. Analytical Biochemistry, 363, 77–82. https://doi.org/10.1016/j.ab.2007.01.002
- Harada, M., Karakawa, S., Yamada, N., Miyano, H., & Shimbo, K. (2019). Biaryl axially chiral derivatizing agent for simultaneous separation and sensitive detection of proteinogenic amino acid enantiomers using liquid chromatography–tandem mass spectrometry. Journal of Chromatography a, 1593, 91–101. https://doi.org/10.1016/j.chroma.2019.01.075
- He, Y., & Concheiro-Guisan, M. (2019). Microextraction sample preparation techniques in forensic analytical toxicology. Biomedical Chromatography, 33, e4444. https://doi.org/10.1002/bmc.4444
- He, Y., Zhao, X.-E., Zhu, S., Wei, N., Sun, J., Zhou, Y., … You, J. (2016). In situ derivatization–ultrasound-assisted dispersive liquid–liquid microextraction for the determination of neurotransmitters in Parkinson's rat brain microdialysates by ultra high performance liquid chromatography–tandem mass spectrometry. Journal of Chromatography a, 1458, 70–81. https://doi.org/10.1016/j.chroma.2016.06.059
- He, Y.-L., Luo, Y.-B., Chen, H., Hou, H.-W., & Hu, Q.-Y. (2017). Research progress in analysis of small molecule metabolites in bio-matrices by stable isotope coded derivatization combining with liquid chromatography–tandem mass spectrometry. Chinese Journal of Analytical Chemistry, 45, 1066–1077. https://doi.org/10.1016/S1872-2040(17)61026-0
- Hellhake, S., Meckelmann, S. V., Empl, M. T., Rentmeister, K., Wißdorf, W., Steinberg, P., … Schebb, N. H. (2020). Non-targeted and targeted analysis of oxylipins in combination with charge-switch derivatization by ion mobility high-resolution mass spectrometry. Analytical and Bioanalytical Chemistry, 412, 5743–5757. https://doi.org/10.1007/s00216-020-02795-2
- Herráez-Hernández, P., Cháfer-Pericás, C., Verdú-Andrés, J., & Campíns-Falcó, P. (2006). An evaluation of solid phase microextraction for aliphatic amines using derivatization with 9-fluorenylmethyl chloroformate and liquid chromatography. Journal of Chromatography a, 1104, 40–46. https://doi.org/10.1016/j.chroma.2005.11.121
- Higashi, T., Akaishi, M., Yokota, M., Suzuki, T., Ogawa, S., Sugiura, Y., … Suematsu, M. (2018). A method for determination of aldosterone in adrenal tributary venous serum by derivatization using Girard P reagent isotopologues followed by LC/ESI–MS/MS. Journal of Chromatography B, 1092, 106–113. https://doi.org/10.1016/j.jchromb.2018.06.001
- Higashi, T., Ichikawa, T., Inagaki, S., Min, J. Z., Fukushima, T., & Toyo'oka, T. (2010). Simple and practical derivatization procedure for enhanced detection of carboxylic acids in liquid chromatography–electrospray ionization–tandem mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 52, 809–818. https://doi.org/10.1016/j.jpba.2010.03.001
- Higashi, T., & Ogawa, S. (2016). Isotope-coded ESI-enhancing derivatization reagents for differential analysis, quantification and profiling of metabolites in biological samples by LC/MS: A review. Journal of Pharmaceutical and Biomedical Analysis, 130, 181–193. https://doi.org/10.1016/j.jpba.2016.04.033
- Hill, H. (2011). Bioanalysis in drug discovery. Bioanalysis, 3, 2155–2158. https://doi.org/10.4155/BIO.11.218
- Horak, J., & Lämmerhofer, M. (2019). Stereoselective separation of underivatized and 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate derivatizedamino acids using zwitterionic quinine and quinidine type stationary phases by liquid chromatography—high resolution mass spectrometry. Journal of Chromatography a, 1596, 69–78. https://doi.org/10.1016/j.chroma.2019.02.060
- Houdier, S., Lévêque, J., Sabatier, T., Jacob, V., & Jaffrezo, J. L. (2018). Aniline-based catalysts as promising tools to improve analysis of carbonyl compounds through derivatization techniques: Preliminary results using dansylacetamidooxyamine derivatization and LC–fluorescence. Analytical and Bioanalyical Chemistry, 410, 7031–7042. https://doi.org/10.1007/s00216-018-1304-3
- Hu, M. H., & Xu, X. Z. (2001). Enantiomeric separation of amino alcohols by ion-pair chromatography. Chinese Chemical Letters, 12, 355–356.
- Huang, W., Lan, M.-D., Qi, C.-B., Zheng, S.-J., Wei, S.-Z., Yuan, B.-F., & Feng, Y.-Q. (2016). Formation and determination of the oxidation products of 5-methylcytosine in RNA. Chemical Science, 7, 5495–5502. https://doi.org/10.1039/C6SC01589A
- Iizuka, H., Harashima, T., Takahashi, S., Kuwabara, R., Naito, Y., Sakamoto, T., … Fukushima, T. (2017). Chromatographic profiles of tryptophan and kynurenine enantiomers derivatized with (S)-4-(3-isothiocyanatopyrrolidin-1-yl)-7-(N,N-dimethylaminosulfonyl)-2,1,3-benzoxadiazole using LC–MS/MS on a triazole-bonded column. Chirality, 29, 603–609. https://doi.org/10.1002/chir.22726
- Ilisz, I., Berkecz, R., & Peter, A. (2008). Application of chiral derivatizing agents in the high-performance liquid chromatographic separation of amino acid enantiomers: A review. Journal of Pharmaceutical and Biomedical Analysis, 47, 1–15. https://doi.org/10.1016/j.jpba.2007.12.013
- Isenberg, S. L., Armistead, P. M., & Glish, G. L. (2014). Optimization of peptide separations by differential ion mobility spectrometry. Journal of the American Society for Mass Spectrometry, 25, 1592–1599. https://doi.org/10.1021/jasms.8b04857
- Jansson-Löfmark, R., Römsing, S., Albers, E., & Ashton, M. (2010). Determination of eflornithine enantiomers in plasma, by precolumn derivatization with o-phtalaldehyde-N-acetyl-l-cysteine and liquid chromatography with UV detection. Biomedical Chromatography, 24, 768–773. https://doi.org/10.1002/bmc.1361
- Ji, Y., Luo, H., Li, H., Lin, Z., & Luo, W. (2020). Determination of plasma homocysteine with a UHPLC–MS/MS method: Application to analyze the correlation between plasma homocysteine and whole blood 5-methyltetrahydrofolate in healthy volunteers. Biomedical Chromatography, 34, e4845. https://doi.org/10.1002/bmc.4845
- Jia, E., & Bartlett, M. G. (2020). Recent advances in liquid chromatographic methods for the determination of selective serotonin reuptake inhibitors and serotonin norepinephrine reuptake inhibitors. Biomedical Chromatography, 34, e4760. https://doi.org/10.1002/bmc.4760
- Jiang, H.-P., Xiong, J., Liu, F.-L., Ma, C.-J., Tang, X.-L., Yuan, B.-F., & Feng, Y.-Q. (2018). Modified nucleoside triphosphates exist in mammals. Chemical Science, 9, 4160–4167. https://doi.org/10.1039/C7SC05472F
- Jiang, R., Jiao, Y., & Xu, F. (2016). Chemical derivatization-based LC–MS for metabolomics: Advantages and challenges. Bioanalysis, 8, 1881–1883. https://doi.org/10.4155/bio-2016-0192
- Jin, X., Zhang, C., Jin, D., & Lee, Y. (2018). Enantioselective analysis of ketoprofen in human saliva by liquid chromatography/tandem mass spectrometry with chiral derivatization. Microchemical Journal, 143, 280–285. https://doi.org/10.1016/j.microc.2018.08.025
- Jones, A., Pravadali-Cekic, S., Hua, S., Kocic, D., Camenzuli, M., Dennis, G., & Shalliker, A. (2016). Post column derivatization using reaction flow high performance liquid chromatography columns. Journal of Visualized Experiments, 110, 53462. https://doi.org/10.3791/53462
- Kalkan, E. A., Sahiner, M., Cakir, D. U., Alpaslan, D., & Yilmaz, S. S. (2016). Quantitative clinical diagnostic analysis of acetone in human blood by HPLC: A metabolomic search for acetone as indicator. Journal of Analytical Methods in Chemistry, 2016, 5176320. https://doi.org/10.1155/2016/5176320
- Khedr, A., Abd El-Hay, S. S., & Kammoun, A. K. (2017). Liquid chromatography–tandem mass spectrometric determination ofpropofol in rat serum and hair at attogram level after derivatization with 3-bromomethyl-propyphenazone. Journal of Pharmaceutical and Biomedical Analysis, 134, 195–202. https://doi.org/10.1016/j.jpba.2016.11.051
- Khedr, A., Khayyat, A. N., & El-Shorbagi, A. A. (2020). Liquid chromatography–diode array–mass spectrometric analysis of amino and mercapto compounds coupled with chloroimino derivatization reagent. Journal of Chromatography a, 1621, 461078. https://doi.org/10.1016/j.chroma.2020.461078
- Kightlinger, W., Warfel, K. F., DeLisa, M. P., & Jewett, M. C. (2020). Synthetic glycobiology: Parts, systems, and applications. ACS Synthetic Biology, 9, 1534–1562. https://doi.org/10.1021/acssynbio.0c00210
- Kim, B., Jung, W., & Kho, Y. (2017). Quantification of malondialdehyde in human urine by HPLC–DAD and derivatization with 2,4-dinitrophenylhydrazine. Bulletin of the Korean Chemical Society, 38, 642–645. https://doi.org/10.1002/bkcs.11143
- Knikman, J. E., Rosing, H., Guchelaar, H.-J., Cats, A., & Beijnen, J. H. (2020). A review of the bioanalytical methods for the quantitative determination of capecitabine and its metabolites in biological matrices. Biomedical Chromatography, 34, e4732. https://doi.org/10.1002/bmc.4732
- Kuwabara, T., Takayama, T., Todoroki, K., Inoue, K., Min, J. Z., & Toyo'oka, T. (2014). Evaluation of a series of prolylamidepyridines as the chiral derivatization reagents for enantioseparation of carboxylic acids by LC–ESI–MS/MS and the application to human saliva. Analytical and Bioanalytical Chemistry, 406, 2641–2649. https://doi.org/10.1007/s00216-014-7637-7
- Lan, M.-D., Yuan, B.-F., & Feng, Y.-Q. (2019). Deciphering nucleic acid modifications by chemical derivatization–mass spectrometry analysis. Chinese Chemical Letters, 30, 1–6. https://doi.org/10.1016/j.cclet.2018.04.021
- Lavilla, I., Romero, V., Costas, I., & Bendicho, C. (2014). Greener derivatization in analytical chemistry. Trends in Analytical Chemistry, 61, 1–10. https://doi.org/10.1016/j.trac.2014.05.007
- Li, D., He, S., Deng, Y., Ding, G., Ni, H., & Cao, Y. (2014). Development and validation of an HPLC method for determination of amikacin in water samples by solid phase extraction and pre-column derivatization. Bulletin of Environmental Contamination and Toxicology, 93, 47–52. https://doi.org/10.1007/s00128-014-1257-y
- Li, L., Wang, Y., Chen, G., Dong, K., & Song, H. (2020). Pre-column derivatization method for determining phenylephrine in human plasma and its application in a pharmacokinetic study. Biomedical Chromatography, 34, e4843. https://doi.org/10.1002/bmc.4843
- Li, L.-P., Jin, M.-N., Shi, Q., Xu, X.-Y., Jiang, Y.-Z., Lee, Y., & Min, J. Z. (2017). Synthesis and evaluation of a novel chiral derivatization reagent for resolution of carboxylic acid enantiomers by RP-HPLC. Microchemical Journal, 135, 213–220. https://doi.org/10.1016/j.microc.2017.09.009
- Licea-Perez, H., Wang, W., Rodgers, C., Bowen, C. L., Fang, K., Szapacs, M., & Evans, C. A. (2015). Camphanic acid chloride: A powerful derivatization reagent for stereoisomeric separation and its DMPK applications. Bioanalysis, 7, 3005–3017. https://doi.org/10.4155/bio.15.219
- Liu, J. F., Yuan, B. F., & Feng, Y. Q. (2015). Determination of hexanal and heptanal in human urine using magnetic solid phase extraction coupled with in-situ derivatization by high performance liquid chromatography. Talanta, 136, 54–59. https://doi.org/10.1016/j.talanta.2015.01.003
- Liu, J.-T., & Liu, R. H. (2002). Enantiomeric composition of abused amine drugs: Chromatographic methods of analysis and data interpretation. Journal of Biochemical and Biophysics Methods, 54, 115–146. https://doi.org/10.1016/s0165-022x(02)00136-7
- Liu, Y.-h., Du, T.-t., Wan, J.-y., Zhao, H., Huang, D., Li, J.-s., & Jiang, X.-h. (2020). Simultaneous determination of thirteen substances related to NAFLD in mouse brain tissue using 3-aminobutyric acid as internal standard by HPLC–FLD. Biomedical Chromatography, 34, e4767. https://doi.org/10.1002/bmc.4767
- Lkhagva, A., Shen, C.-C., Leung, Y.-S., & Tai, H.-C. (2020). Comparative study of five different amine-derivatization methods for metabolite analyses by liquid chromatography–tandem mass spectrometry. Journal of Chromatography a, 1610, 460536. https://doi.org/10.1016/j.chroma.2019.460536
- Lu, Y., Yao, D., & Chen, C. (2013). 2-Hydrazinoquinoline as a derivatization agent for LC–MS-based metabolomic investigation of diabetic ketoacidosis. Metabolites, 3, 993–1010. https://doi.org/10.3390/metabo3040993
- Luo, X., Yu, Y., Kong, X., Wang, X., Ji, Z., Sun, Z., & You, J. (2019). Rapid microwave assisted derivatization of nitrofuran metabolites for analysis in shrimp by high performance liquid chromatography–fluorescence detector. Microchemical Journal, 150, 104189. https://doi.org/10.1016/j.microc.2019.104189
- Ma, S.-R., Tong, Q., Zhao, Z.-X., Cong, L., Yu, J.-B., Fu, J., … Jiang, J.-D. (2019). Determination of berberine-upregulated endogenous short-chain fatty acids through derivatization by 2-bromoacetophenone. Analytical and Bioanalytical Chemistry, 411, 3191–3207. https://doi.org/10.1007/s00216-019-01793-3
- Maroulis, M., Monemvasios, I., Vardaka, E., & Rigas, P. (2008). Determination of domoic acid in mussels by HPLC with post-column derivatization using 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl) and fluorescence detection. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 876, 245–251. https://doi.org/10.1016/j.jchromb.2008.10.053
- Marquis, B. J., Louks, H. P., Bose, C., Wolfe, R. R., & Singh, S. P. (2017). A new derivatization reagent for HPLC–MS analysis of biological organic acids. Chromatographia, 80, 1723–1732. https://doi.org/10.1007/s10337-017-3421-0
- Matuszewski, B. K. (2006). Standard line slopes as a measure of a relative matrix effect in quantitative HPLC–MS bioanalysis. Journal of Chromatography B, 830, 293–300. https://doi.org/10.1016/j.jchromb.2005.11.009
- McGinnis, A. C., Grubb, E. C., & Bartlett, M. G. (2013). Systematic optimization of ion-pairing agents and hexafluoroisopropanol for enhanced electrospray ionization mass spectrometry of oligonucleotides. Rapid Communications in Mass Spectrometry, 27, 2655–2664. https://doi.org/10.1002/rcm.6733
- Meckelmann, S. W., Hellhake, S., Steucka, M., Krohna, M., & Schebba, N. H. (2017). Comparison of derivatization/ionization techniques for liquid chromatography tandem mass spectrometry analysis of oxylipins. Prostaglandins & Other Lipid Mediators, 130, 8–15. https://doi.org/10.1016/j.prostaglandins.2017.02.003
- Medvedovici, A., Albu, F., & David, V. (2010). Handling drawbacks of mass spectrometric detection coupled to liquid chromatography in bioanalysis. Journal of Liquid Chromatography and Related Technologies, 33, 1255–1286. https://doi.org/10.1080/10826076.2010.484375
- Medvedovici, A., Albu, F., Sora, I. D., Udrescu, S., Galaon, T., & David, V. (2009). Assay of free captopril in human plasma as monobromobimane derivative, using RPLC/(+)ESI/MS/MS: Validation aspects and bioequivalence evaluation. Biomedical Chromatography, 23, 1092–1100. https://doi.org/10.1002/bmc.1229
- Medvedovici, A., Bacalum, E., & David, V. (2018). Sample preparation for large scale bioanalytical studies based on liquid chromatographic technique. Biomedical Chromatography, 32, e4137. https://doi.org/10.1002/bmc.4137
- Medvedovici, A., Farca, A., & David, V. (2009). Derivatization reactions in liquid chromatography for drug assaying in biological fluids. Advances in Chromatography, 47, 283–322. https://doi.org/10.1201/9781420060379.ch8
- Mezzar, S., de Schryver, E., & Van Veldhoven, P. P. (2014). RP-HPLC–fluorescence analysis of aliphatic aldehydes: Application to aldehyde-generating enzymes HACL1 and SGPL1. Journal of Lipid Research, 55, 573–582. https://doi.org/10.1194/jlr.D044230
- Mizuno, H., Shindo, T., Ito, K., Sakane, I., Miyazaki, Y., Toyo'oka, T., & Todoroki, K. (2020). Development of a selective and sensitive analytical method to detect isomerized aspartic acid residues in crystallin using a combination of derivatization and liquid chromatography mass spectrometry. Journal of Chromatography a, 1623, 461134. https://doi.org/10.1016/j.chroma.2020.461134
- Moein, M. M., El Beqqali, A., & Abdel-Rehim, M. (2017). Bioanalytical method development and validation: Critical concepts and strategies. Journal of Chromatography B, 1043, 3–11. https://doi.org/10.1016/j.jchromb.2016.09.028
- Moldoveanu, S. C. (2004). Solutions and challenges in sample preparation for chromatography. Journal of Chromatographic Science, 42, 1–14. https://doi.org/10.1093/chromsci/42.1.1
- Moldoveanu, S. C., & David, V. (2002). Sample preparation in chromatography. Amsterdam: Elsevier.
- Moldoveanu, S. C., & David, V. (2015). Modern sample preparation for chromatography. Amsterdam: Elsevier.
10.1016/B978-0-444-54319-6.00012-8 Google Scholar
- Moldoveanu, S. C., & David, V. (2017). Selection of the HPLC method in chemical analysis. Amsterdam: Elsevier.
- Molnar-Perl, I. (2011). Advancement in the derivatizations of the amino groups with the o-phthaldehyde-thiol and with the 9-fluorenylmethyloxycarbonyl chloride reagents. Journal of Chromatography B, 879, 1241–1269. https://doi.org/10.1016/j.jchromb.2011.01.027
- Muguruma, Y., Tsutsui, H., Noda, T., Akatsu, H., & Inoue, K. (2018). Widely targeted metabolomics of Alzheimer's disease postmortem cerebrospinal fluid based on 9-fluorenylmethyl chloroformate derivatized ultra-high performance liquid chromatography tandem mass spectrometry. Journal of Chromatography B, 1091, 53–66. https://doi.org/10.1016/j.jchromb.2018.05.031
- Nagy, K., Pollreisz, F., Takáts, Z., & Vékey, K. (2004). Atmospheric pressure chemical ionization mass spectrometry of aldehydes in biological matrices. Rapid Communications in Mass Spectrometry, 18, 2473–2478. https://doi.org/10.1002/rcm.1648
- Nie, Y., Liu, X., Yang, X., & Zhao, Z. (2013). Review: Recent application of chiral liquid chromatography–tandem mass spectrometric methods for enantiomeric pharmaceutical and biomedical determinations. Journal of Chromatographic Science, 51, 753–763. https://doi.org/10.1093/chromsci/bms209
- Nishijo, N., Hayama, T., Tomita, R., Yamaguchi, M., & Fujioka, T. (2020). Application of a fluorous derivatization method for characterization of glutathione-trapped reactive metabolites with liquid chromatography–tandem mass spectrometry analysis. Journal of Chromatography a, 1622, 461160. https://doi.org/10.1016/j.chroma.2020.461160
- Niwa, M., Watanabe, M., & Watanabe, N. (2015). Chemical derivatization in LC–MS bioanalysis: Current & future challenges. Bioanalysis, 7, 2443–2449. https://doi.org/10.4155/bio.15.177
- Nuhu, A. A., Basheer, C., & Saad, B. (2011). Liquid-phase and dispersive liquid–liquid microextraction techniques with derivatization: Recent applications in bioanalysis. Journal of Chromatography B, 879, 1180–1188. https://doi.org/10.1016/j.jchromb.2011.02.009
- Oenning, A. L., Morés, L., Dias, A. N., & Carasek, E. (2017). A new configuration for bar adsorptive microextraction (BAμE) for the quantification of biomarkers (hexanal and heptanal) in human urine by HPLC providing an alternative for early lung cancer diagnosis. Analytica Chimica Acta, 965, 54–62. https://doi.org/10.1016/j.aca.2017.02.034
- Onal, C., & Tekkeli, S. E. K. (2020). Ultrafast liquid chromatographic analysis of erdosteine in human plasma based on fluorimetric detection and precolumn derivatization with 4-bromomethyl-7-methoxycoumarin: Application to pharmacokinetic studies. Luminescence, 35, 748–753. https://doi.org/10.1002/bio.3780
- Pandey, S., Pandey, P., Tiwari, G., & Tiwari, R. (2010). Bioanalysis in drug discovery and development. Pharmaceutical Methods, 1, 14–24. https://doi.org/10.1016/S2229-4708(10)11003-6
- Panuwet, P., Hunter, R. E. Jr., D'Souza, P. E., Chen, X., Radford, S. A., Cohen, J. R., … Boyd Barr, D. (2016). Biological matrix effects in quantitative tandem mass spectrometry-based analytical methods: Advancing biomonitoring. Critical Reviews in Analytical Chemistry, 46, 93–105. https://doi.org/10.1080/10408347.2014.980775
- Patteson, K. G., Rodicio, L. P., & Limbach, P. A. (2001). Identification of the mass-silent post-transcriptionally modified nucleoside pseudouridine in RNA by matrix-assisted laser desorption/ionization mass spectrometry. Nucleic Acids Research, 29, e49. https://doi.org/10.1093/nar/29.10.e49
- Perez, H. L., & Evans, C. A. (2015). Chemical derivatization in bioanalysis. Bioanalysis, 7, 2435–2437. https://doi.org/10.4155/bio.15.182
- Poole, C. F. (2013). Derivatization in liquid chromatography. In Liquid chromatography, applications (pp. 25–56). Amsterdam: Elsevier.
- Poole, C. F., & Atapattu, S. N. (2020). Determination of physicochemical properties of small molecules by reversed-phase liquid chromatography. Journal of Chromatography a, 1626, 461427. https://doi.org/10.1016/j.chroma.2020.461427
- Pugniere, M., Mattras, H., Castro, B., & Previero, A. (1997). Adsorption liquid chromatography on silica for the chiral separation of amino acids and asymmetric amines derivatized with optically active N-α-9-fluorenylmethyloxycarbonyl-amino acid-N-carboxyanhydrides. Journal of Chromatography a, 767, 69–75. https://doi.org/10.1016/S0021-9673(97)00021-6
- Qi, B.-L., Liu, P., Wang, Q.-W., Cai, W.-J., Yuan, B.-F., & Feng, Y.-Q. (2014). Derivatization for liquid chromatography–mass spectrometry. Trends in Analytical Chemistry, 59, 121–132. https://doi.org/10.1016/j.trac.2014.03.013
- Qian, K., Tang, T., Shi, T., Li, P., & Cao, Y. (2009). Solid-phase extraction and residue determination of glyphosate in apple by ion-pairing reverse-phase liquid chromatography with pre-column derivatization. Journal of Separation Science, 32, 2394–2400. https://doi.org/10.1002/jssc.200900118
- Qin, Q., Feng, D., Hu, C., Wang, B., Chang, M., Liu, X., … Xu, G. (2020). Parallel derivatization strategy coupled with liquid chromatography–mass spectrometry for broad coverage of steroid hormones. Journal of Chromatography a, 1614, 460709. https://doi.org/10.1016/j.chroma.2019.460709
- Rastkari, N., & Ahmadkhaniha, R. (2018). Development and validation of a high-performance liquid chromatography method for determination of lisinopril in human plasma by magnetic solid-phase extraction and pre-column derivatization. Biomedical Chromatography, 32, e4120. https://doi.org/10.1002/bmc.4120
- Ravasco, J. M. J. M., Faustino, H., Trindade, A., & Goi, M. P. P. (2019). Bioconjugation with maleimides: A useful tool for chemical biology. Chemistry—a European Journal, 25, 43–59. https://doi.org/10.1002/chem.201803174
- Rebane, R., Rodima, T., Kütt, A., & Herodes, K. (2015). Development of amino acid derivatization reagents for liquid chromatography electrospray ionization mass spectrometric analysis and ionization efficiency measurements. Journal of Chromatography a, 1390, 62–70. https://doi.org/10.1016/j.chroma.2015.02.050
- Ribeiro, C., Santos, C., Gonçalves, V., Ramos, A., Afonso, C., & Tiritan, M. E. (2018). Chiral drug analysis in forensic chemistry: An overview. Molecules, 23, 262. https://doi.org/10.3390/molecules23020262
- Rocha, D. G., Lana, M. A. G., de Assis, D. C. S., Cancado, S. V., & Augusti, R. (2020). Determination of steroids in bovine hair: Validation of a microwave-assisted chemical derivatization method using LC–MS/MS and in vivo studies. Drug Testing and Analysis, 12, 1078–1086. https://doi.org/10.1002/dta.2815
- Romero, R. M., Bolger, M. B., Morningstar-Kywi, N., & Haworth, I. S. (2020). Teaching of biopharmaceutics in a drug design course: Use of GastroPlus as educational software. Journal of Chemical Education, 97, 2212–2220. https://doi.org/10.1021/acs.jchemed.0c00401
- Russo, M. S. T., Napylov, A., Paquet, A., & Vuckovic, D. (2020). Comparison of N-ethyl maleimide and N-(1-phenylethyl) maleimide for derivatization of biological thiols using liquid chromatography–mass spectrometry. Analytical and Bioanalytical Chemistry, 412, 1639–1652. https://doi.org/10.1007/s00216-020-02398-x
- Sabourian, R., Mirjalili, S. Z., Namini, N., Chavoshy, F., Hajimahmoudi, M., & Safavi, M. (2020). HPLC methods for quantifying anticancer drugs in human samples: A systematic review. Analytical Biochemistry, 610, 113891. https://doi.org/10.1016/j.ab.2020.113891
- Sajid, M. (2018). Dispersive liquid–liquid microextraction coupled with derivatization: A review of different modes, applications, and green aspects. Trends in Analytical Chemistry, 106, 169–182. https://doi.org/10.1016/j.trac.2018.07.009
- Santa, T. (2011). Derivatization reagents in liquid chromatography/electrospray ionization tandem mass spectrometry. Biomedical Chromatography, 25, 1–10. https://doi.org/10.1002/bmc.1548
- Santa, T. (2013). Derivatization in liquid chromatography for mass spectrometric detection. Drug Discovery & Therapeutics, 7, 9–17. https://doi.org/10.5582/ddt.2013.v7.1.9
- Scheijen, J. L. J. M., Hanssen, N. M. J., van de Waarenburg, M. P. H., Jonkers, D. M. A. E., Stehouwer, C. D. A., & Schalkwijk, C. G. (2012). l(+) and d(−) lactate are increased in plasma and urine samples of type 2 diabetes as measured by a simultaneous quantification of l(+) and d(−) lactate by reversed-phase liquid chromatography tandem mass spectrometry. Experimental Diabetes Research, 2012, 234812. https://doi.org/10.1155/2012/234812
- Schreier, P., Bernreuther, A., & Huffer, M. (1995). Analysis of chiral organic molecules: Methodology and applications (p. 97). Berlin: de Gruyter.
- Sentellas, S., Saurina, J., & Núñez, O. (2020). Solid-phase extraction in bioanalytical applications. In C. F. Poole (Ed.), Solid-phase extraction (pp. 673–698). Amsterdam: Elsevier. https://doi.org/10.1016/B978-0-12-816906-3.00025-X
- Sharma, P., Guttikar, S., Solanki, G., Patel, D. P., & Shrivastav, P. S. (2012). Determination of (S)-(+)- and (R)-(−)-ibuprofen enantiomers in human plasma after chiral precolumn derivatization by reversed-phase LC–ESI–MS/MS. Bioanalysis, 4, 2909–2927. https://doi.org/10.4155/bio.12.275
- Shen, Z., Lv, C., & Zeng, S. (2016). Significance and challenges of stereoselectivity assessing methods in drug metabolism. Journal of Pharmaceutical Analysis, 6, 1–10. https://doi.org/10.1016/j.jpha.2015.12.004
- Smon, A., Cuk, V., Brecelj, J., Murko, S., Groselj, U., Zerjav Tansek, M., … Lampret, B. R. (2019). Comparison of liquid chromatography with tandem mass spectrometry and ion-exchange chromatography by post-column ninhydrin derivatization for amino acid monitoring. Clinica Chimica Acta, 495, 446–450. https://doi.org/10.1016/j.cca.2019.05.007
- Soman, A., Qiu, Y., & Li, Q. C. (2008). HPLC–UV method development and validation for the determination of low level formaldehyde in a drug substance. Journal of Chromatographic Science, 46, 461–465. https://doi.org/10.1093/chromsci/46.6.461
- Souza-Silva, E. A., Reyes-Garcés, N., Gómez-Ríos, G. A., Boyaci, E., Bojko, B., & Pawliszyn, J. (2019). A critical review of the state of the art of solid-phase microextraction of complex matrices III. Bioanalytical and clinical applications. Trends in Analytical Chemistry, 71, 249–264. https://doi.org/10.1016/j.trac.2015.04.017
- Srinivas, N. R. (2004). Evaluation of experimental strategies for the development of chiral chromatographic methods based on diastereomer formation. Biomedical Chromatography, 18, 207–233. https://doi.org/10.1002/bmc.352
- Srinivas, N. R. (2009). Dodging matrix effects in liquid chromatography tandem mass spectrometric assays-compilation of key learnings and perspectives. Biomedical Chromatography, 23, 451–454. https://doi.org/10.1002/bmc.1152
- Steiner, D., Krska, R., Malachová, A., Taschl, I., & Sulyok, M. (2020). Evaluation of matrix effects and extraction efficiencies of LC–MS/MS methods as the essential part for proper validation of multiclass contaminants in complex feed. Journal of Agricultural and Food Chemistry, 68, 3868–3880. https://doi.org/10.1021/acs.jafc.9b07706
- Steuer, A. E., Schmidhauser, C., Liechti, M. E., & Kraemer, T. (2015). Development and validation of an LC–MS/MS method after chiral derivatization for the simultaneous stereoselective determination of methylenedioxy-methamphetamine (MDMA) and its phase I and II metabolites in human blood plasma. Drug Testing and Analysis, 7, 592–602. https://doi.org/10.1002/dta.1740
- Sun, X. X., Sun, Z. S., & Aboul-Enein, H. Y. (2001). Chiral derivatization reagents for drug enantioseparation by high-performance liquid chromatography based upon pre-column derivatization and formation of diastereomers: Enantioselectivity and related structure. Biomedical Chromatography, 15, 116–132. https://doi.org/10.1002/bmc.41
- Sun, Z., Jin, Q., Yu, Y., Cheng, J., Ji, Z., Li, G., & You, J. (2018). A highly sensitive and selective method for analysis of biomarkers of diisocyanate exposure in human urine by high-performance liquid chromatography with intramolecular excimer-forming fluorescence derivatization. Journal of Liquid Chromatography and Related Technologies, 41, 982–991. https://doi.org/10.1080/10826076.2018.1549068
- Suresh, P. S., Trivedi, R. K., Srinivas, N. R., & Mullangi, R. (2020). A review of bioanalytical methods for chronic lymphocytic leukemia drugs and metabolites in biological matrices. Biomedical Chromatography, 33, e4742. https://doi.org/10.1002/bmc.4742
- Tache, F., David, V., Farca, A., & Medvedovici, A. (2001). HPLC–DAD determination of metformin in human plasma using derivatization with p-nitrobenzoyl chloride in a biphasic system. Microchemical Journal, 68, 13–19. https://doi.org/10.1016/S0026-265X(00)00170-3
- Tan, A., & Fanaras, J. C. (2018). How much separation for LC–MS/MS quantitative bioanalysis of drugs and metabolites. Journal of Chromatography B, 1084, 23–35. https://doi.org/10.1016/j.jchromb.2018.03.019
- Toyo'oka, T. (2017). Derivatization-based high-throughput bioanalysis by LC–MS. Analytical Sciences, 33, 555–564. https://doi.org/10.2116/analsci.33.555
- Treder, N., Baczek, T., Wychodnik, K., Rogowska, J., Wolska, L., & Plenis, A. (2020). The influence of ionic liquids on the effectiveness of analytical methods used in the monitoring of human and veterinary pharmaceuticals in biological and environmental samples—Trends and perspectives. Molecules, 25, 286. https://doi.org/10.3390/molecules25020286
- Trujillo-Rodríguez, M. J., Nan, H., Varona, M., Emaus, M. N., Souza, I. D., & Anderson, J. L. (2019). Advances of ionic liquids in analytical chemistry. Analytical Chemistry, 91, 505–531. https://doi.org/10.1021/acs.analchem.8b04710
- Tsukamoto, Y., Santa, T., Saimaru, H., Imai, K., & Funatsu, T. (2005). Synthesis of benzofurazan derivatization reagents for carboxylic acids and its application to analysis of fatty acids in rat plasma by high-performance liquid chromatography–electrospray ionization mass spectrometry. Biomedical Chromatography, 19, 802–808. https://doi.org/10.1002/bmc.523
- Uchiyama, S., Inaba, Y., & Kunugita, N. (2011). Derivatization of carbonyl compounds with 2,4-dinitrophenylhydrazine and their subsequent determination by high-performance liquid chromatography. Journal of Chromatography a, 879, 1282–1289. https://doi.org/10.1016/j.jchromb.2010.09.028
- van Holthoon, F., Mulder, P. P., van Bennekom, E. O., Heskamp, H., Zuidema, T., & van Rhijn, H. J. (2010). Quantitative analysis of penicillins in porcine tissues, milk and animal feed using derivatisation with piperidine and stable-isotope dilution liquid chromatography tandem mass spectrometry. Analytical and Bioanalytical Chemistry, 396, 3027–3040. https://doi.org/10.1007/s00216-010-3523-0
- van Leeuwen, S. M., Hendriksen, L., & Karst, U. (2004). Determination of aldehydes and ketones using derivatization with 2,4-dinitrophenylhydrazine and liquid chromatography–atmospheric pressure photoionization–mass spectrometry. Journal of Chromatography a, 1058, 107–112. https://doi.org/10.1016/j.chroma.2004.08.149
- Vashistha, V.K., Martens, J., & Bhushan, R. (2017) Sensitive RP-HPLC enantioseparation of (RS)-ketamine via chiral derivatization based on (S)-levofoxacin. Chromatographia, 80, 1501–1508. https://10.1007/s10337-017-3367-2
- Wada, M., Nakamura, S., & Nakashima, K. (2018). HPLC analysis of homocysteine and related compounds. In N. Filip & C. E. Iancu (Eds.), Non-Proteinogenic amino acids. London: IntechOpen. https://doi.org/10.5772/intechopen.75030
- Wang, X., Garcia, C. T., Gong, G., Wishnok, J. S., & Tannenbaum, S. R. (2018). Automated online solid-phase derivatization for sensitive quantification of endogenous S-nitrosoglutathione and rapid capture of other low-molecular–mass S-nitrosothiols. Analytical Chemistry, 90, 1967–1975. https://doi10.1021/acs.analchem.7b04049
- Welch, L., Dong, X., Hewitt, D., Irwin, M., McCarty, L., Tsai, C., & Baginski, T. (2018). Facile quantitation of free thiols in a recombinant monoclonal antibody by reversed-phase high performance liquid chromatography with hydrophobicity-tailored thiol derivatization. Journal of Chromatography B, 1092, 156–167. https://doi.org/10.1016/j.jchromb.2018.05.039
- Wheaton, J. P., Chambers, E. E., & Fountain, K. J. (2012). Challenges in developing an ultra-sensitive bioanalytical method for ethinylestradiol in human plasma. Bioanalysis, 4, 769–781. https://doi.org/10.4155/BIO.12.29
- Williamson, L. N., & Bartlett, M. G. (2007). Quantitative liquid chromatography/time-of-flight mass spectrometry. Biomedical Chromatography, 21, 567–576. https://doi.org/10.1002/bmc.844
- Winther, J. R., & Thorpe, C. (2014). Quantification of thiols and disulfides. Biochimica et Biophysica Acta, 1840, 838–846. https://doi.org/10.1016/j.bbagen.2013.03.031
- Wu, Q., Li, Y., Wang, Y., & Lu, H. (2020). Quantitative mass spectrometry imaging of amino acids with isomer differentiation in brain tissue via exhaustive liquid microjunction surface sampling–tandem mass tags labeling—Ultra performance liquid chromatography–mass spectrometry. Journal of Chromatography a, 1621, 461086. https://doi.org/10.1016/j.chroma.2020.461086
- Xia, L., Du, Y., Xiao, X., & Li, G. (2019). One-step membrane protected micro-solid-phase extraction and derivatization coupling to high-performance liquid chromatography for selective determination of aliphatic aldehydes in cosmetics and food. Talanta, 202, 580–590. https://doi.org/10.1016/j.talanta.2019.05.035
- Xiao, H., Liu, P., Zheng, S., Wang, X., Ding, J., & Feng, Y. (2020). Screening of amino acids in dried blood spots by stable isotope derivatization–liquid chromatography–electrospray ionization mass spectrometry. Chinese Chemical Letters, 31, 2423–2427. https://doi.org/10.1016/j.cclet.2020.03.003
- Xie, Z., Yu, L., Yu, H., & Deng, Q. (2012). Application of a fluorescent derivatization reagent 9-chloromethyl anthracene on determination of carboxylic acids by HPLC. Journal of Chromatographic Science, 50, 464–468. https://doi.org/10.1093/chromsci/bms023
- Xu, F., Zou, L., Liu, Y., Zhang, Z., & Ong, C. N. (2011). Enhancement of the capabilities of liquid chromatography—Mass spectrometry with derivatization: General principles and applications. Mass Spectrometry Reviews, 30, 1143–1172. https://doi.org/10.1002/mas.20316
- Ye, K., Jiang, Q., Lu, Y., Wen, X., & Yang, J. (2020). Quantification of prostaglandins in rat uterus by ultra high-performance liquid chromatography/mass spectrometry based on derivatization with analogous reagents. Journal of Chromatography a, 1618, 460869. https://doi.org/10.1016/j.chroma.2020.460869
- Yilmaz, B., Asci, A., Kucukoglu, K., & Albayrak, M. (2016). Simple high-performance liquid chromatography method for formaldehyde determination in human tissue through derivatization with 2,4-dinitrophenylhydrazine. Journal of Separation Science, 39, 2963–2969. https://doi.org/10.1002/jssc.201600345
- Yokoyama, T., Tokuda, M., Amano, M., & Mikami, K. (2017). Simultaneous determination of primary and secondary d- and l-amino acids by reversed-phase high-performance liquid chromatography using pre-column derivatization with two-step labelling method. Bioscience, Biotechnology, and Biochemistry, 81, 1681–1686. https://doi.org/10.1080/09168451.2017.1340090
- Zacharis, C. K., & Tzanavaras, P. D. (2013). Liquid chromatography coupled to on-line post column derivatization for the analysis of organic compounds: A review on instrumentation and chemistries. Analytica Chimica Acta, 798, 1–24. https://doi.org/10.1016/j.aca.2013.07.032
- Zacharis, C. K., & Tzanavaras, P. D. (2020). Trace analysis of rimantadine in human urine after dispersive liquid liquid microextraction followed by liquid chromatography–post column derivatization. Journal of Separation Science, 43, 547–690. https://doi.org/10.1002/jssc.201900903
- Zeng, H., Qi, C.-B., Liu, T., Xiao, H.-M., Cheng, Q.-Y., Jiang, H.-P., … Feng, Y.-Q. (2017). Formation and determination of endogenous methylated nucleotides in mammals by chemical labeling coupled with mass spectrometry analysis. Analytical Chemistry, 89, 4153–4160. https://doi.org/10.1021/acs.analchem.7b00052
- Zeng, M., & Cao, H. (2018). Fast quantification of short chain fatty acids and ketone bodies by liquid chromatography–tandem mass spectrometry after facile derivatization coupled with liquid–liquid extraction. Journal of Chromatography B, 1083, 137–145. https://doi.org/10.1016/j.jchromb.2018.02.040
- Zeng, Y., Li, H., Lin, Z., Luo, H., Zheng, J., & Luo, W. (2012). 4-Diazomethylpyridine as a derivatization reagent and its application to the determination of prostaglandin E2 by LC–MS/MS. Chromatographia, 75, 875–881. https://doi.org/10.1007/s10337-012-2271-z
- Zhang, F., Bartels, M. J., Brodeur, J. C., McClymont, E. L., & Woodburn, K. B. (2004). Quantitation of 17α-ethinylestradiol in aquatic samples using liquid–liquid phase extraction, dansyl derivatization, and liquid chromatography/positive electrospray tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 18, 2739–2742. https://doi.org/10.1002/rcm.1690
- Zhang, Q., & Adam, K.-P. (2019). LC–MS/MS method with chemical derivatization for quantitation of l-threonate in human plasma. Biomedical Chromatography, 33, e4636. https://doi.org/10.1002/bmc.4636
- Zhang, T.-Y., Li, S., Zhu, Q.-F., Wang, Q., Hussain, D., & Feng, Y.-Q. (2019). Derivatization for liquid chromatography–electrospray ionization–mass spectrometry analysis of small-molecular weight compounds. Trends in Analytical Chemistry, 119, 115608. https://doi.org/10.1016/j.trac.2019.07.019
- Zhang, X., Wang, J., Wu, Q., Li, L., Wang, Y., & Yang, H. (2019). Determination of kanamycin by high performance liquid chromatography. Molecules, 24, 1902. https://doi.org/10.3390/molecules24101902
- Zhao, J., Shin, Y., Jin, Y., Jeong, K. M., & Lee, J. (2017). Determination of enantiomeric vigabatrin by derivatization with diacetyl-l-tartaric anhydride followed by ultra-high performance liquid chromatography-quadrupole-time-of-flight mass spectrometry. Journal of Chromatography B, 1040, 199–207. https://doi.org/10.1016/j.jchromb.2016.11.016
- Zhao, S., & Li, L. (2020). Chemical derivatization in LC–MS based metabolomics study. Trends in Analytical Chemistry, 131, 115988. https://doi.org/10.1016/j.trac.2020.115988
- Zhao, X.-E., Zhu, S., & Liu, H. (2020). Recent progresses of derivatization approaches in the targeted lipidomics analysis by mass spectrometry. Journal of Separation Science, 43, 1838–1846. https://doi.org/10.1002/jssc.201901346
- Zheng, J.-Y., Jiang, X., Zhou, J.-L., Shi, Z.-Q., Liu, L.-F., & Xin, G.-Z. (2019). A readily 16O-/18O-isotopically-paired chiral derivatization approach for the quantification of 2-HG metabolic panel by liquid chromatography–tandem mass spectrometry. Analytica Chimica Acta, 1077, 174–182. https://doi.org/10.1016/j.aca.2019.05.056
- Zheng, L., Zhao, X. E., Zhu, S., Tao, Y., Ji, W., Geng, Y., … You, J. (2017). A new combined method of stable isotope-labeling derivatization ultrasound-assisted dispersive liquid-liquid microextraction for the determination of neurotransmitters in rat brain microdialysates by ultra high performance liquid chromatography tandem mass spectrometry. Journal of Chromatography B, 1054, 64–72. https://doi.org/10.1016/j.jchromb.2017.03.039
- Zheng, Z., Zhao, X.-E., Zhu, S., Dang, J., Qiao, X., Qiu, Z., & Tao, Y. (2018). Simultaneous determination of oleanolic acid and ursolic acid by in vivo microdialysis via UHPLC–MS/MS using magnetic dispersive solid phase extraction coupling with microwave-assisted derivatization and its application to a pharmacokinetic study of Arctiumlappa L. root extract in rats. Journal of Agricultural and Food Chemistry, 66, 3975–3982. https://doi.org/10.1021/acs.jafc.7b06015
- Zhong, D., & Zhou, Y. (2019). Derivatization in sample preparation for LC–MS bioanalysis. In W. Li, W. Jian, & Y. Fu (Eds.), Sample preparation in LC–MS bioanalysis (pp. 260–274). Hoboken: John Wiley & Sons. https://doi.org/10.1002/9781119274315.ch21
10.1002/9781119274315.ch21 Google Scholar
- Zhou, T., Zeng, J., Zhao, T., Zhong, Q., Yang, Y., & Tan, W. (2017). Enantioselective analysis of bambuterol in human plasma using microwave-assisted chiral derivatization coupled with ultra high performance liquid chromatography and tandem mass spectrometry. Journal of Separation Science, 40, 2779–2790. https://doi.org/10.1002/jssc.201700280
- Zhu, S., Zheng, Z., Peng, H., Sun, J., Zhao, X.-E., & Liu, H. (2020). Quadruplex stable isotope derivatization strategy for the determination of panaxadiol and panaxatriol in foodstuffs and medicinal materials using ultra high performance liquid chromatography tandem mass spectrometry. Journal of Chromatography A, 1616, 460794. https://doi.org/10.1016/j.chroma.2019.460794
- Zhuang, J., You, J., Zhang, S., Sun, Z., Ji, Z., Liu, J., & Yu, Y. (2018). Determination of thiols by gas purge microsyringe extraction coupled with chemical derivatization by high performance liquid chromatography-fluorescence detection with mass spectrometry identification. Journal of Liquid Chromatography & Related Technologies, 41, 794–803. https://doi.org/10.1080/10826076.2018.1502671