Oleaginous Yeast Biology Elucidated With Comparative Transcriptomics
Sarah J. Weintraub
Department of Bioinformatics and Computational Biology, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
Search for more papers by this authorZekun Li
Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
Search for more papers by this authorCarter L. Nakagawa
Department of Bioinformatics and Computational Biology, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
Search for more papers by this authorJoseph H. Collins
Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
Search for more papers by this authorCorresponding Author
Eric M. Young
Department of Bioinformatics and Computational Biology, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
Correspondence: Eric M. Young ([email protected])
Search for more papers by this authorSarah J. Weintraub
Department of Bioinformatics and Computational Biology, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
Search for more papers by this authorZekun Li
Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
Search for more papers by this authorCarter L. Nakagawa
Department of Bioinformatics and Computational Biology, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
Search for more papers by this authorJoseph H. Collins
Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
Search for more papers by this authorCorresponding Author
Eric M. Young
Department of Bioinformatics and Computational Biology, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
Correspondence: Eric M. Young ([email protected])
Search for more papers by this authorABSTRACT
Extremophilic yeasts have favorable metabolic and tolerance traits for biomanufacturing- like lipid biosynthesis, flavinogenesis, and halotolerance – yet the connection between these favorable phenotypes and strain genotype is not well understood. To this end, this study compares the phenotypes and gene expression patterns of biotechnologically relevant yeasts Yarrowia lipolytica, Debaryomyces hansenii, and Debaryomyces subglobosus grown under nitrogen starvation, iron starvation, and salt stress. To analyze the large data set across species and conditions, two approaches were used: a “network-first” approach where a generalized metabolic network serves as a scaffold for mapping genes and a “cluster-first” approach where unsupervised machine learning co-expression analysis clusters genes. Both approaches provide insight into strain behavior. The network-first approach corroborates that Yarrowia upregulates lipid biosynthesis during nitrogen starvation and provides new evidence that riboflavin overproduction in Debaryomyces yeasts is overflow metabolism that is routed to flavin cofactor production under salt stress. The cluster-first approach does not rely on annotation; therefore, the coexpression analysis can identify known and novel genes involved in stress responses, mainly transcription factors and transporters. Therefore, this work links the genotype to the phenotype of biotechnologically relevant yeasts and demonstrates the utility of complementary computational approaches to gain insight from transcriptomics data across species and conditions.
Open Research
Data Availability Statement
RNA-Seq reads are available on PRJNA1028627 NCBI BioProject, and the Joint Genome Institute. Genome sequences can be found on NCBI with the following accession IDs: Y. lipolytica PO1f - PRJNA1047134, D. subglobosus dep8 - PRJNA1047133. All data is available on GitHub (https://github.com/emyounglab/rnaseq-onboarding).
The data that support the findings of this study are openly available in NCBI at https://submit.ncbi.nlm.nih.gov/.
Supporting Information
Filename | Description |
---|---|
bit28891-sup-0001-dh_transcriptomics_supplementary.pdf5.6 MB | Supplementary Information |
bit28891-sup-0002-dh_transcriptomics_supplementary.zip13.8 MB | Supplementary Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- Abbas, C. A., and A. A. Sibirny. 2011. “Genetic Control of Biosynthesis and Transport of Riboflavin and Flavin Nucleotides and Construction of Robust Biotechnological Producers.” Microbiology and Molecular Biology Reviews 75: 321–360.
- Abdel-Mawgoud, A. M., K. A. Markham, C. M. Palmer, N. Liu, G. Stephanopoulos, and H. S. Alper. 2018. “Metabolic Engineering in the Host Yarrowia lipolytica.” Metabolic Engineering 50: 192–208.
- Abghari, A., and S. Chen. 2014. “Yarrowia lipolytica as an Oleaginous Cell Factory Platform for Production of Fatty Acid-Based Biofuel and Bioproducts.” Frontiers in Energy Research 2: 21.
10.3389/fenrg.2014.00021 Google Scholar
- Adrio, J. L. 2017. “Oleaginous Yeasts: Promising Platforms for the Production of Oleochemicals and Biofuels.” Biotechnology and Bioengineering 114: 1915–1920.
- Ageitos, J. M., J. A. Vallejo, P. Veiga-Crespo, and T. G. Villa. 2011. “Oily Yeasts as Oleaginous Cell Factories.” Applied Microbiology and Biotechnology 90: 1219–1227.
- Agostinho, S. P., M. A. Branco, D. E. S. Nogueira, et al. 2024. “Unsupervised Analysis of Whole Transcriptome Data From Human Pluripotent Stem Cells Cardiac Differentiation.” Scientific Reports 14: 3110.
- Ahmad, F., and A. H. Rose. 1962. “The Role of Biotin in the Regulation of Enzyme Synthesis in Yeast.” Archives of Biochemistry and Biophysics 97: 302–308.
- Ahmad, I., A. Rawoof, K. Islam, J. Momo, and N. Ramchiary. 2021. “Identification and Expression Analysis of Phosphate Transporter Genes and Metabolites in Response to Phosphate Stress in Capsicum annuum.” Environmental and Experimental Botany 190: 104597.
- Albacar, M., A. Zekhnini, J. Pérez-Valle, J. L. Martínez, A. Casamayor, and J. Ariño. 2023. “Transcriptomic Profiling of the Yeast Komagataella phaffii in Response to Environmental Alkalinization.” Microbial Cell Factories 22: 63.
- Allen, A. E., J. LaRoche, U. Maheswari, et al. 2008. “Whole-Cell Response of the Pennate Diatom Phaeodactylum tricornutum to Iron Starvation.” Proceedings of the National Academy of Sciences 105: 10438–10443.
- Ashburner, M., C. A. Ball, J. A. Blake, et al. 2000. “Gene Ontology: Tool for the Unification of Biology.” Nature Genetics 25: 25–29.
- Attfield, P. V. 1997. “Stress Tolerance: The Key to Effective Strains of Industrial Baker's Yeast.” Nature Biotechnology 15: 1351–1357.
- Balabanova, L., L. Averianova, M. Marchenok, O. Son, and L. Tekutyeva. 2021. “Microbial and Genetic Resources for Cobalamin (Vitamin B12) Biosynthesis: From Ecosystems to Industrial Biotechnology.” International Journal of Molecular Sciences 22: 4522.
- Bankar, A. V., A. R. Kumar, and S. S. Zinjarde. 2009. “Environmental and Industrial Applications of Yarrowia lipolytica.” Applied Microbiology and Biotechnology 84: 847–865.
- Bao, W., Z. Li, X. Wang, et al. 2021. “Approaches to Improve the Lipid Synthesis of Oleaginous Yeast Yarrowia lipolytica: A Review.” Renewable and Sustainable Energy Reviews 149: 111386.
- Barman, A., D. Gohain, U. Bora, and R. Tamuli. 2018. “Phospholipases Play Multiple Cellular Roles Including Growth, Stress Tolerance, Sexual Development, and Virulence in Fungi.” Microbiological Research 209: 55–69.
- Baxter, C. J., H. Redestig, N. Schauer, et al. 2007. “The Metabolic Response of Heterotrophic Arabidopsis Cells to Oxidative Stress.” Plant Physiology 143: 312–325.
- Becker, D. F., W. Zhu, and M. A. Moxley. 2011. “Flavin Redox Switching of Protein Functions.” Antioxidants & Redox Signaling 14: 1079–1091.
- Bellou, S., I.-E. Triantaphyllidou, P. Mizerakis, and G. Aggelis. 2016. “High Lipid Accumulation in Yarrowia lipolytica Cultivated Under Double Limitation of Nitrogen and Magnesium.” Journal of Biotechnology 234: 116–126.
- Bianchi, F., J. S. van't Klooster, S. J. Ruiz, and B. Poolman. 2019. “Regulation of Amino Acid Transport in Saccharomyces cerevisiae.” Microbiology and Molecular Biology Reviews 83: 10–1128.
10.1128/MMBR.00024-19 Google Scholar
- Blais, E. M., A. K. Chavali, and J. A. Papin. 2013. “Linking Genome-Scale Metabolic Modeling and Genome Annotation.” Systems Metabolic Engineering: Methods in Molecular Biology 985: 61–83.
- Blazeck, J., A. Hill, L. Liu, et al. 2014. “Harnessing Yarrowia lipolytica Lipogenesis to Create a Platform for Lipid and Biofuel Production.” Nature Communications 5: 3131.
- Bremer, E., and R. Krämer. 2019. “Responses of Microorganisms to Osmotic Stress.” Annual Review of Microbiology 73: 313–334.
- Brion, C., D. Pflieger, S. Souali-Crespo, A. Friedrich, and J. Schacherer. 2016. “Differences in Environmental Stress Response Among Yeasts Is Consistent With Species-Specific Lifestyles.” Molecular Biology of the Cell 27: 1694–1705.
- Bushnell, B., J. Rood, and E. Singer. 2017. “Bbmerge-Accurate Paired Shotgun Read Merging Via Overlap.” PLoS One 12: e0185056.
- Cao, X., Y.-B. Lv, J. Chen, T. Imanaka, L.-J. Wei, and Q. Hua. 2016. “Metabolic Engineering of Oleaginous Yeast Yarrowia lipolytica for Limonene Overproduction.” Biotechnology for Biofuels 9: 1–11.
- Capece, A., and P. Romano. 2009. “Pecorino Di Filiano’ Cheese as a Selective Habitat for the Yeast Species, Debaryomyces hansenii.” International Journal of Food Microbiology 132: 180–184.
- Chakravarti, A., K. Camp, D. S. McNabb, and I. Pinto. 2017. “The Regulation of the Candida albicans Oxidative Stress Response by the ccaat-Binding Factor.” PLoS One 12: e0170649.
- Chen, J., L. Zhang, Y. Liu, et al. 2024. “Rna-Seq-Based Wgcna and Association Analysis Reveal the Key Regulatory Module and Genes Responding to Salt Stress in Wheat Roots.” Plants 13: 274.
- Chen, X., Y. He, L. Liu, X. Zhu, B. Sen, and G. Wang. 2022. “Nitrogen Starvation Enhances the Production of Saturated and Unsaturated Fatty Acids in Aurantiochytrium Sp. PKU# SW8 by Regulating Key Biosynthetic Genes.” Marine Drugs 20: 621.
- Chen, X., Z. Li, X. Zhang, F. Hu, D. D. Ryu, and J. Bao. 2009. “Screening of Oleaginous Yeast Strains Tolerant to Lignocellulose Degradation Compounds.” Applied Biochemistry and Biotechnology 159: 591–604.
- Christensen, J., K. Agger, P. A. Cloos, et al. 2007. “Rbp2 Belongs to a Family of Demethylases, Specific for Tri-And Dimethylated Lysine 4 on Histone 3.” Cell 128: 1063–1076.
- Collins, J. H., K. W. Keating, T. R. Jones, et al. 2021. “Engineered Yeast Genomes Accurately Assembled From Pure and Mixed Samples.” Nature Communications 12: 1–15.
- Contreras-Martinez, L. M., J. T. Boock, J. S. Kostecki, and M. P. DeLisa. 2012. “The Ribosomal Exit Tunnel as a Target for Optimizing Protein Expression in Escherichia coli.” Biotechnology Journal 7: 354–360.
- Conway, J. R., A. Lex, and N. Gehlenborg. 2017. “Upsetr: An R Package for the Visualization of Intersecting Sets and Their Properties.” Bioinformatics 33: 2938–2940. https://doi.org/10.1093/bioinformatics/btx364.
- Cooper, T. G., and R. Sumrada. 1975. “Urea Transport in Saccharomyces cerevisiae.” Journal of Bacteriology 121: 571–576.
- Csonka, L. N. 1989. “Physiological and Genetic Responses of Bacteria to Osmotic Stress.” Microbiological Reviews 53: 121–147.
- Cyert, M. S., and C. C. Philpott. 2013. “Regulation of Cation Balance in Saccharomyces cerevisiae.” Genetics 193: 677–713.
- Defosse, T., Y. Le Govic, V. Courdavault, et al. 2018. “Yeasts From the Ctg Clade (Candida Clade): Biology, Impact in Human Health, and Biotechnological Applications.” Journal de Mycologie Medicale 28: 257–268.
- Demain, A. L. 1972. “Riboflavin Oversynthesis.” Annual Reviews in Microbiology 26: 369–388.
- Deparis, Q., A. Claes, M. R. Foulquié-Moreno, and J. M. Thevelein. 2017. “Engineering Tolerance to Industrially Relevant Stress Factors in Yeast Cell Factories.” FEMS yeast research 17: fox036.
- D'haeseleer, P. 2005. “How Does Gene Expression Clustering Work?” Nature Biotechnology 23: 1499–1501.
- Dmytruk, K. V., and A. A. Sibirny. 2012. “Candida famata (Candida flareri).” Yeast 29: 453–458.
- Dmytruk, K. V., A. Y. Voronovsky, and A. A. Sibirny. 2006. “Insertion Mutagenesis of the Yeast Candida famata (Debaryomyces hansenii) by Random Integration of Linear DNA Fragments.” Current Genetics 50: 183–191.
- Dong, Y., H. Liu, Y. Zhang, et al. 2017. “Comparative Genomic Study of aldh Gene Superfamily in Gossypium: A Focus on Gossypium hirsutum Under Salt Stress.” PLoS One 12: e0176733.
- d'Oria, A., G. Courbet, B. Billiot, et al. 2022. “Drought Specifically Downregulates Mineral Nutrition: Plant Ionomic Content and Associated Gene Expression.” Plant Direct 6: e402.
- Dougherty, K. M., D. A. Swanson, L. C. Brody, and D. Valle. 1993. “Expression and Processing of Human Ornithine- -Aminotransferase in Saccharomyces cerevisiae.” Human Molecular Genetics 2: 1835–1840.
- Dutertre, M., G. Sanchez, J. Barbier, L. Corcos, and D. Auboeuf. 2011. “The Emerging Role of Pre-Messenger RNA Splicing in Stress Responses: Sending Alternative Messages and Silent Messengers.” RNA Biology 8: 740–747.
- Epstein, C. B., and F. R. Cross. 1992. “Clb5: A Novel B Cyclin From Budding Yeast With a Role in S Phase.” Genes & Development 6: 1695–1706.
- Evans, C. T., and C. Ratledge. 1984. “Effect of Nitrogen Source on Lipid Accumulation in Oleaginous Yeasts.” Microbiology 130: 1693–1704.
- Fang, Y., Y. Tang, Y. Zhang, et al. 2021. “The h3k36me2 Methyltransferase nsd1 Modulates h3k27ac at Active Enhancers to Safeguard Gene Expression.” Nucleic Acids Research 49: 6281–6295.
- Farahbod, M., and P. Pavlidis. 2020. “Untangling the Effects of Cellular Composition on Coexpression Analysis.” Genome Research 30: 849–859.
- Fedorovich, D., O. Protchenko, and E. Lesuisse. 1999. “Iron Uptake by the Yeast Pichia guilliermondii. Flavinogenesis and Reductive Iron Assimilation Are Co-Regulated Processes.” Biometals 12: 295–300.
- Fondell, J. D., M. Guermah, S. Malik, and R. G. Roeder. 1999. “Thyroid Hormone Receptor-Associated Proteins and General Positive Cofactors Mediate Thyroid Hormone Receptor Function in the Absence of the Tata Box-Binding Protein-Associated Factors of tfiid.” Proceedings of the National Academy of Sciences 96: 1959–1964.
- Fujii, J., T. Myint, A. Okado, H. Kaneto, and N. Taniguchi. 1996. “Oxidative Stress Caused by Glycation of Cu, Zn-Superoxide Dismutase and Its Effects on Intracellular Components.” Nephrology Dialysis Transplantation 11: 34–40.
- Gostinčar, C., and N. Gunde-Cimerman. 2018. “Overview of Oxidative Stress Response Genes in Selected Halophilic Fungi.” Genes 9: 143.
- Grenson, M. 1992. “ Amino Acid Transporters in Yeast: Structure, Function and Regulation.” In J. J. H. H. M. De Pont, (Ed.), New Comprehensive Biochemistry, vol. 21, 219–245. Elsevier.
- Hartman, T., K. Stead, D. Koshland, and V. Guacci. 2000. “Pds5p Is an Essential Chromosomal Protein Required for Both Sister Chromatid Cohesion and Condensation in Saccharomyces cerevisiae.” Journal of Cell Biology 151: 613.
- Hasanuzzaman, M., M. R. H. Raihan, A. A. C. Masud, et al. 2021. “Regulation of Reactive Oxygen Species and Antioxidant Defense in Plants Under Salinity.” International Journal of Molecular Sciences 22: 9326.
- Heefner, D. L., C. A. Weaver, M. J. Yarus, and L. A. Burdzinski. 1992. Method for Producing Riboflavin With Candida famata. US Patent 5164303.
- Hernick, M., and C. A. Fierke. 2005. “Zinc Hydrolases: The Mechanisms of Zinc-Dependent Deacetylases.” Archives of Biochemistry and Biophysics 433: 71–84.
- Herrero, E., J. Ros, G. Bellí, and E. Cabiscol. 2008. “Redox Control and Oxidative Stress in Yeast Cells.” Biochimica et Biophysica Acta (BBA)-General Subjects 1780: 1217–1235.
- Heyer, L. J., S. Kruglyak, and S. Yooseph. 1999. “Exploring Expression Data: Identification and Analysis of Coexpressed Genes.” Genome Research 9: 1106–1115.
- Hobot, J. A., and D. H. Jennings. 1981. “Growth of Debaryomyces hansenii and Saccharomyces cerevisiae in Relation to pH and Salinity.” Experimental Mycology 5: 217–228.
- Hoffmann, T., and E. Bremer. 2016. “Management of Osmotic Stress by Bacillus subtilis: Genetics and Physiology.” In F. J. de Bruijn (Ed.), Stress and Environmental Regulation of Gene Expression and Adaptation in Bacteria: 657–676. https://doi.org/10.1002/9781119004813.ch63.
10.1002/9781119004813.ch63 Google Scholar
- Hohmann, S. 2002. “Osmotic Stress Signaling and Osmoadaptation in Yeasts.” Microbiology and Molecular Biology Reviews 66: 300–372.
- Holtzman, D. A., S. Yang, and D. G. Drubin. 1993. “Synthetic-Lethal Interactions Identify Two Novel Genes, sla1 and sla2, That Control Membrane Cytoskeleton Assembly in Saccharomyces cerevisiae.” Journal of Cell Biology 122: 635–644.
- Honer Zu Bentrup, K., A. Miczak, D. L. Swenson, and D. G. Russell. 1999. “Characterization of Activity and Expression of Isocitrate Lyase in Mycobacterium avium and Mycobacterium tuberculosis.” Journal of Bacteriology 181: 7161–7167.
- Huerta-Cepas, J., D. Szklarczyk, D. Heller, et al. 2019. “Eggnog 5.0: A Hierarchical, Functionally and Phylogenetically Annotated Orthology Resource Based on 5090 Organisms and 2502 Viruses.” Nucleic Acids Research 47: D309–D314.
- Humphrey, T., and T. Enoch. 1998. “Sum1, a Highly Conserved wd-Repeat Protein, Suppresses sm Checkpoint Mutants and Inhibits the Osmotic Stress Cell Cycle Response in Fission Yeast.” Genetics 148: 1731–1742.
- Hunter, J. D. 2007. “Matplotlib: A 2d Graphics Environment.” Computing in Science & Engineering 9: 90–95. https://doi.org/10.1109/MCSE.2007.55.
- Jagtap, S. S., A. A. Bedekar, V. Singh, Y.-S. Jin, and C. V. Rao. 2021. “Metabolic Engineering of the Oleaginous Yeast Yarrowia lipolytica po1f for Production of Erythritol From Glycerol.” Biotechnology for Biofuels 14: 1–17.
- Johnston, A. J., J. Hoogenraad, D. A. Dougan, et al. 2002. “Insertion and Assembly of Human tom7 into the Preprotein Translocase Complex of the Outer Mitochondrial Membrane.” Journal of Biological Chemistry 277: 42197–42204.
- Jumper, J., R. Evans, A. Pritzel, et al. 2021. “Highly Accurate Protein Structure Prediction With Alphafold.” Nature 596: 583–589.
- Jungwirth, H., and K. Kuchler. 2006. “Yeast abc Transporters – A Tale of Sex, Stress, Drugs and Aging.” FEBS Letters 580: 1131–1138.
- Kanehisa, M., and S. Goto. 2000. “Kegg: Kyoto Encyclopedia of Genes and Genomes.” Nucleic Acids Research 28: 27–30.
- Kanipes, M. I., and S. A. Henry. 1997. “The Phospholipid Methyltransferases in Yeast.” Biochimica et Biophysica Acta (BBA)–Lipids and Lipid Metabolism 1348: 134–141.
- Karpov, D. S., E. N. Grineva, A. T. Leinsoo, et al. 2017. “Functional Analysis of Debaryomyces hansenii rpn4 on a Genetic Background of Saccharomyces cerevisiae.” FEMS Yeast Research 17: fow098.
- Kaur, A., M. Pan, M. Meislin, M. T. Facciotti, R. El-Gewely, and N. S. Baliga. 2006. “A Systems View of Haloarchaeal Strategies to Withstand Stress From Transition Metals.” Genome Research 16: 841–854.
- Khan, S., S. N. Nagarajan, A. Parikh, et al. 2010. “Phosphorylation of Enoyl-Acyl Carrier Protein Reductase Inha Impacts Mycobacterial Growth and Survival.” Journal of Biological Chemistry 285: 37860–37871.
- Kim, D., B. Langmead, and S. L. Salzberg. 2015. “Hisat: A Fast Spliced Aligner With Low Memory Requirements.” Nature Methods 12: 357–360.
- Kinoshita, N., J. Minshull, and M. W. Kirschner. 1995. “The Identification of Two Novel Ligands of the fgf Receptor by a Yeast Screening Method and Their Activity in Xenopus Development.” Cell 83: 621–630.
- Kinoshita, T., and M. Fujita. 2015. “Biosynthesis of gpi-Anchored Proteins: Special Emphasis on gpi Lipid Remodeling.” Journal of lipid research 57: 6–24.
- Knight, S. A. B., E. Lesuisse, R. Stearman, R. D. Klausner, and A. Dancis. 2002. “Reductive Iron Uptake by Candida albicans: Role of Copper, Iron and the tup1 Regulator.” Microbiology 148: 29–40.
- Kong, G., H. Lee, Q. Tran, et al. 2020. “Current Knowledge on the Function of -Methyl Acyl-Coa Racemase in Human Diseases.” Frontiers in Molecular Biosciences 7: 153.
- Kuo, A., B. Bushnell, and I. V. Grigoriev. 2014. “ Fungal Genomics: Sequencing and Annotation.” In Francis M. Martin (Ed.), Advances in Botanical Research, vol. 70, 1–52. Elsevier.
- Labella, A. L., D. A. Opulente, J. L. Steenwyk, C. T. Hittinger, and A. Rokas. 2019. “Variation and Selection on Codon Usage Bias Across an Entire Subphylum.” PLoS Genetics 15: e1008304.
- Langfelder, P., and S. Horvath. 2008. “WGCNA: An R Package for Weighted Correlation Network Analysis.” BMC Bioinformatics 9: 559.
- Lazar, N., A. Fay, M. Nandakumar, et al. 2017. “Control of Biotin Biosynthesis in Mycobacteria by a Pyruvate Carboxylase Dependent Metabolic Signal.” Molecular Microbiology 106: 1018–1031.
- Lex, A., N. Gehlenborg, H. Strobelt, R. Vuillemot, and H. Pfister. 2014. “Upset: Visualization of Intersecting Sets.” IEEE Transactions on Visualization and Computer Graphics (InfoVis) 20: 1983–1992. https://doi.org/10.1109/TVCG.2014.2346248.
- Li, B., L. C. Tsoi, W. R. Swindell, et al. 2014. “Transcriptome Analysis of Psoriasis in a Large Case-Control Sample: RNA-Seq Provides Insights Into Disease Mechanisms.” Journal of Investigative Dermatology 134: 1828–1838.
- Li, F., J. Eriksen, J. Finer-Moore, et al. 2020. “Ion Transport and Regulation in a Synaptic Vesicle Glutamate Transporter.” Science 368: 893–897.
- Li, H., and H. S. Alper. 2016. “Enabling Xylose Utilization in Yarrowia lipolytica for Lipid Production.” Biotechnology Journal 11: 1230–1240.
- Li, S. 2014. “Transcriptional Control of Flavonoid Biosynthesis: Fine-Tuning of the myb-bhlh-wd40 (mbw) Complex.” Plant Signaling & Behavior 9: e27522.
- Liao, Y., G. K. Smyth, and W. Shi. 2014. “Featurecounts: An Efficient General Purpose Program for Assigning Sequence Reads to Genomic Features.” Bioinformatics 30: 923–930.
- LiD, R. 2001. “Wd-Repeatproteins: Structure Characteristics, Biological Function, and Their Involvement in Human Diseases.” CellMolLifeSci 58: 2085–2097.
- Lin, W., Y. Wang, Y. Chen, Q. Wang, Z. Gu, and Y. Zhu. 2021. “Role of Calcium Signaling Pathway-Related Gene Regulatory Networks in Ischemic Stroke Based on Multiple wgcna and Single-Cell Analysis.” Oxidative Medicine and Cellular Longevity 2021: 8060477.
- Liu, L., and H. S. Alper. 2014. “Draft Genome Sequence of the Oleaginous Yeast Yarrowia lipolytica po1f, a Commonly Used Metabolic Engineering Host.” Genome Announcements 2: 10–1128.
10.1128/genomeA.00652-14 Google Scholar
- Love, M. I., W. Huber, and S. Anders. 2014. “Moderated Estimation of Fold Change and Dispersion for Rna-Seq Data With Deseq2.” Genome Biology 15: 1–21.
- Lv, Y., M. Marsafari, M. Koffas, J. Zhou, and P. Xu. 2019. “Optimizing Oleaginous Yeast Cell Factories for Flavonoids and Hydroxylated Flavonoids Biosynthesis.” ACS Synthetic Biology 8: 2514–2523.
- Madzak, C. 2018. “Engineering Yarrowia lipolytica for Use in Biotechnological Applications: A Review of Major Achievements and Recent Innovations.” Molecular Biotechnology 60: 621–635.
- Madzak, C. 2021. “Yarrowia lipolytica Strains and Their Biotechnological Applications: How Natural Biodiversity and Metabolic Engineering Could Contribute to Cell Factories Improvement.” Journal of Fungi 7: 548.
- Madzak, C., B. Tréton, S. Blanchin-Roland, et al. 2000. “Strong Hybrid Promoters and Integrative Expression/Secretion Vectors for Quasi-Constitutive Expression of Heterologous Proteins in the Yeast Yarrowia lipolytica.” Journal of Molecular Microbiology and Biotechnology 2: 207–216.
- Merdinger, E., and E. M. Devine, Jr. 1965. “Lipids of Debaryomyces hansenii.” Journal of Bacteriology 89: 1488–1493.
- Meyer, W., U. Bömer, and E. Pratje. 1997. “Mitochondrial Inner Membrane Bound pet1402 Protein Is Rapidly Imported Into Mitochondria and Affects the Integrity of the Cytochrome Oxidase and Ubiquinol-Cytochrome C Oxidoreductase Complexes.” Biological Chemistry 378: 1373–1379.
- Michán, C., J. L. Martínez, M. C. Alvarez, M. Turk, H. Sychrova, and J. Ramos. 2013. “Salt and Oxidative Stress Tolerance in Debaryomyces hansenii and Debaryomyces fabryi.” FEMS Yeast Research 13: 180–188.
- Miller, K. K., and H. S. Alper. 2019. “Yarrowia lipolytica: More Than an Oleaginous Workhorse.” Applied Microbiology and Biotechnology 103: 9251–9262.
- Molin, M., J. Norbeck, and A. Blomberg. 2003. “Dihydroxyacetone Kinases in Saccharomyces cerevisiae Are Involved in Detoxification of Dihydroxyacetone.” Journal of Biological Chemistry 278: 1415–1423.
- Morel, G., L. Sterck, D. Swennen, et al. 2015. “Differential Gene Retention as an Evolutionary Mechanism to Generate Biodiversity and Adaptation in Yeasts.” Scientific Reports 5: 11571.
- Morimoto, R. I., M. P. Kline, D. N. Bimston, and J. J. Cotto. 1997. “The Heat-Shock Response: Regulation and Function of Heat-Shock Proteins and Molecular Chaperones.” Essays in Biochemistry 32: 17–29.
- Morin, N., J. Cescut, A. Beopoulos, et al. 2011. “Transcriptomic Analyses During the Transition From Biomass Production to Lipid Accumulation in the Oleaginous Yeast Yarrowia lipolytica.” PLoS One 6: e27966.
- Mukherjee, V., D. Radecka, G. Aerts, K. J. Verstrepen, B. Lievens, and J. M. Thevelein. 2017. “Phenotypic Landscape of Non-Conventional Yeast Species for Different Stress Tolerance Traits Desirable in Bioethanol Fermentation.” Biotechnology for Biofuels 10: 1–19.
- Nacak, T. G., K. Leptien, D. Fellner, H. G. Augustin, and J. Kroll. 2006. “The btb-Kelch Protein lztr-1 Is a Novel Golgi Protein That Is Degraded Upon Induction of Apoptosis.” Journal of Biological Chemistry 281: 5065–5071.
- Nakov, T., K. J. Judy, K. M. Downey, E. C. Ruck, and A. J. Alverson. 2020. “Transcriptional Response of Osmolyte Synthetic Pathways and Membrane Transporters in a Euryhaline Diatom During Long-Term Acclimation to a Salinity Gradient.” Journal of Phycology 56: 1712–1728.
- Navarrete, C., A. T. Frost, L. Ramos-Moreno, M. R. Krum, and J. L. Martínez. 2021. “A Physiological Characterization in Controlled Bioreactors Reveals a Novel Survival Strategy for Debaryomyces hansenii at High Salinity.” Yeast 38: 302–315.
- Navarrete, C., B. J. Sánchez, S. Savickas, and J. L. Martínez. 2022. “Debaryomics: An Integrative-Omics Study to Understand the Halophilic Behaviour of Debaryomyces hansenii.” Microbial Biotechnology 15: 1133–1151.
- Nishinaka, Y., H. Masutani, H. Nakamura, and J. Yodoi. 2001. “Regulatory Roles of Thioredoxin in Oxidative Stress-Induced Cellular Responses.” Redox Report 6: 289–295.
- O'Brien, C. E., C. G. McCarthy, A. E. Walshe, et al. 2018. “Genome Analysis of the Yeast Diutina Catenulata, a Member of the Debaryomycetaceae/Metschnikowiaceae (Ctg-Ser) Clade.” PLoS One 13: e0198957.
- Ochoa-Gutiérrez, D., A. M. Reyes-Torres, I. de la Fuente-Colmenares, et al. 2022. “Alternative Cug Codon Usage in the Halotolerant Yeast Debaryomyces hansenii: Gene Expression Profiles Provide New Insights Into Ambiguous Translation.” Journal of Fungi 8: 970.
- Ohlrogge, J., and J. Browse. 1995. “Lipid Biosynthesis.” Plant Cell 7: 957.
- Overbeek, R., N. Larsen, T. Walunas, et al. 2003. “The ergo tm Genome Analysis and Discovery System.” Nucleic Acids Research 31: 164–171.
- Oyelade, J., I. Isewon, F. Oladipupo, et al. 2016. “Clustering Algorithms: Their Application to Gene Expression Data.” Bioinformatics and Biology Insights 10: BBI–S38316.
10.4137/BBI.S38316 Google Scholar
- Ozaki, S., Y. Ogata, K. Suda, et al. 2010. “Coexpression Analysis of Tomato Genes and Experimental Verification of Coordinated Expression of Genes Found in a Functionally Enriched Coexpression Module.” DNA research 17: 105–116.
- Palmer, C. M., K. K. Miller, A. Nguyen, and H. S. Alper. 2020. “Engineering 4-coumaroyl-coa Derived Polyketide Production in Yarrowia lipolytica Through a -Oxidation Mediated Strategy.” Metabolic Engineering 57: 174–181.
- Papanikolaou, S., and G. Aggelis. 2002. “Lipid Production by Yarrowia lipolytica Growing on Industrial Glycerol in a Single-Stage Continuous Culture.” Bioresource Technology 82: 43–49.
- Papouskova, K., and H. Sychrova. 2007. “The Co-Action of Osmotic and High Temperature Stresses Results in a Growth Improvement of Debaryomyces hansenii Cells.” International journal of Food Microbiology 118: 1–7.
- Park, Y.-K., and R. Ledesma-Amaro. 2023. “What Makes Yarrowia lipolytica Well Suited for Industry?” Trends in Biotechnology 41: 242–254.
- Pedregosa, F., G. Varoquaux, A. Gramfort, et al. 2011. “Scikit-Learn: Machine Learning in Python.” Journal of Machine Learning Research 12: 2825–2830.
- Poli, J. S., M. A. N. da Silva, E. P. Siqueira, V. M. Pasa, C. A. Rosa, and P. Valente. 2014. “Microbial Lipid Produced by Yarrowia lipolytica qu21 Using Industrial Waste: A Potential Feedstock for Biodiesel Production.” Bioresource Technology 161: 320–326.
- Pollastri, S., and M. Tattini. 2011. “Flavonols: Old Compounds for Old Roles.” Annals of Botany 108: 1225–1233.
- Pomraning, K. R., Y.-M. Kim, C. D. Nicora, et al. 2016. “Multi-Omics Analysis Reveals Regulators of the Response to Nitrogen Limitation in Yarrowia lipolytica.” BMC Genomics 17: 1–18.
- Ribeiro, R. A., N. Bourbon-Melo, and I. Sá-Correia. 2022. “The Cell Wall and the Response and Tolerance to Stresses of Biotechnological Relevance in Yeasts.” Frontiers in Microbiology 13: 953479.
- Robinson, M. D., D. J. McCarthy, and G. K. Smyth. 2010. “Edger: A Bioconductor Package for Differential Expression Analysis of Digital Gene Expression Data.” Bioinformatics 26: 139–140.
- Sáez-Sáez, J., G. Wang, E. R. Marella, S. Sudarsan, M. C. Pastor, and I. Borodina. 2020. “Engineering the Oleaginous Yeast Yarrowia lipolytica for High-Level Resveratrol Production.” Metabolic Engineering 62: 51–61.
- Santamauro, F., F. M. Whiffin, R. J. Scott, and C. J. Chuck. 2014. “Low-Cost Lipid Production by an Oleaginous Yeast Cultured in Non-Sterile Conditions Using Model Waste Resources.” Biotechnology for Biofuels 7: 1–11.
- Schmidt, W. 1999. “Mechanisms and Regulation of Reduction-Based Iron Uptake in Plants.” New Phytologist 141: 1–26.
- Shakoury-Elizeh, M., J. Tiedeman, J. Rashford, et al. 2004. “Transcriptional Remodeling in Response to Iron Deprivation in Saccharomyces cerevisiae.” Molecular Biology of the Cell 15: 1233–1243.
- Shcherbik, N., and D. G. Pestov. 2019. “The Impact of Oxidative Stress on Ribosomes: From Injury to Regulation.” Cells 8: 1379.
- Shi, S., and H. Zhao. 2017. “Metabolic Engineering of Oleaginous Yeasts for Production of Fuels and Chemicals.” Frontiers in Microbiology 8: 2185.
- Shima, J., A. Ando, and T. Nakamura, et al. 2010. “Environmental Stress Tolerance of Yeast: Importance in Industrial Uses and Molecular Mechanisms.” Nippon Shokuhin Kagaku Kogaku Kaishi=Journal of the Japanese Society for Food Science and Technology 57: 225–231.
- Sibirny, A. A., and A. Y. Voronovsky. 2009. “Candida famata (Debaryomyces hansenii).” In T. Satyanarayana, G. Kunze, (Eds.), Yeast Biotechnology: Diversity and Applications. Springer. https://doi.org/10.1007/978-1-4020-8292-4_5.
10.1007/978-1-4020-8292-4_5 Google Scholar
- Sitepu, I., T. Selby, T. Lin, S. Zhu, and K. Boundy-Mills. 2014. “Carbon Source Utilization and Inhibitor Tolerance of 45 Oleaginous Yeast Species.” Journal of Industrial Microbiology and Biotechnology 41: 1061–1070.
- Slabaugh, E., and F. Brandizzi. 2011. “Membrane-Tethered Transcription Factors Provide a Connection Between Stress Response and Developmental Pathways.” Plant Signaling & Behavior 6: 1210–1211.
- Sohier, D., A.-S. Le Dizes, D. Thuault, C. Neuveglise, E. Coton, and S. Casaregola. 2009. “Important Genetic Diversity Revealed by Inter-ltr pcr Fingerprinting of Kluyveromyces marxianus and Debaryomyces hansenii Strains From French Traditional Cheeses.” Dairy Science and Technology 89: 569–581.
- Solomon, E. I., U. M. Sundaram, and T. E. Machonkin. 1996. “Multicopper Oxidases and Oxygenases.” Chemical Reviews 96: 2563–2606.
- Spagnuolo, M., A. Yaguchi, and M. Blenner. 2019. “Oleaginous Yeast for Biofuel and Oleochemical Production.” Current Opinion in Biotechnology 57: 73–81.
- Stojanovski, D., M. Bohnert, N. Pfanner, and M. van der Laan. 2012. “Mechanisms of Protein Sorting in Mitochondria.” Cold Spring Harbor Perspectives in Biology 4: a011320.
- Stratford, M., H. Steels, M. Novodvorska, D. B. Archer, and S. V. Avery. 2019. “Extreme Osmotolerance and Halotolerance in Food-Relevant Yeasts and the Role of Glycerol-Dependent Cell Individuality.” Frontiers in Microbiology 9: 3238.
- Sun, M.-L., T.-Q. Shi, L. Lin, R. Ledesma-Amaro, and X.-J. Ji. 2022. “Advancing Yarrowia lipolytica as a Superior Biomanufacturing Platform by Tuning Gene Expression Using Promoter Engineering.” Bioresource Technology 347: 126717.
- Sun, Y., M. Shi, D. Wang, et al. 2023. “Research Progress on the Roles of Actin-Depolymerizing Factor in Plant Stress Responses.” Frontiers in Plant Science 14: 1278311.
- Tanner, Jr, F., C. Vojnovich, and J. Van Lanen. 1945. “Riboflavin Production by Candida Species.” Science 101: 180–181.
- Tatusov, R. L., N. D. Fedorova, J. D. Jackson, et al. 2003. “The Cog Database: An Updated Version Includes Eukaryotes.” BMC Bioinformatics 4: 1–14.
- T'Jampens, D., L. Devriendt, V. De Corte, J. Vandekerckhove, and J. Gettemans. 2002. “Selected Btb/Poz-Kelch Proteins Bind atp.” FEBS Letters 516: 20–26.
- Tsyrulnyk, A. O., Y. A. Andreieva, J. Ruchala, et al. 2020. “Expression of Yeast Homolog of the Mammal bcrp Gene Coding for Riboflavin Efflux Protein Activates Vitamin B2 Production in the Flavinogenic Yeast Candida famata.” Yeast 37: 467–473.
- Van Rossum, G., and F. L. Drake, Jr. 1995. Python Reference Manual. Centrum voor Wiskunde en Informatica Amsterdam.
- Verghese, J., J. Abrams, Y. Wang, and K. A. Morano. 2012. “Biology of the Heat Shock Response and Protein Chaperones: Budding Yeast (Saccharomyces cerevisiae) as a Model System.” Microbiology and Molecular Biology Reviews 76: 115–158.
- Vickers, M. F., S. Y. Yao, S. A. Baldwin, J. D. Young, and C. E. Cass. 2000. “Nucleoside Transporter Proteins of Saccharomyces cerevisiae: Demonstration of a Transporter (fui1) With High Uridine Selectivity in Plasma Membranes and a Transporter (fun26) With Broad Nucleoside Selectivity in Intracellular Membranes.” Journal of Biological Chemistry 275: 25931–25938.
- Voronovsky, A. Y., C. A. Abbas, K. V. Dmytruk, et al. 2004. “Candida famata (Debaryomyces hansenii) DNA Sequences Containing Genes Involved in Riboflavin Synthesis.” Yeast 21: 1307–1316.
- Wagner, J. M., L. Liu, S.-F. Yuan, M. V. Venkataraman, A. R. Abate, and H. S. Alper. 2018. “A Comparative Analysis of Single Cell and Droplet-Based facs for Improving Production Phenotypes: Riboflavin Overproduction in Yarrowia lipolytica.” Metabolic engineering 47: 346–356.
- Wallace, V. 2014. “ Improving Stress Tolerance in Industrial Saccharomyces cerevisiae Strains for Ethanol Production From Lignocellulosic Biomass.” Disseration thesis. Lund University.
- Wang, J., R. Ledesma-Amaro, Y. Wei, B. Ji, and X.-J. Ji. 2020. “Metabolic Engineering for Increased Lipid Accumulation in Yarrowia lipolytica- A Review.” Bioresource Technology 313: 123707.
- Wu, S., Z. Zhu, L. Fu, B. Niu, and W. Li. 2011. “Webmga: A Customizable Web Server for Fast Metagenomic Sequence Analysis.” BMC Genomics 12: 1–9.
- Wu, Y., Y. Wang, H. Shi, H. Hu, L. Yi, and J. Hou. 2022. “Time-Course Transcriptome and wgcna Analysis Revealed the Drought Response Mechanism of Two Sunflower Inbred Lines.” PLoS One 17: e0265447.
- Xue, L.-L., H.-H. Chen, and J.-G. Jiang. 2017. “Implications of Glycerol Metabolism for Lipid Production.” Progress in Lipid Research 68: 12–25.
- Yaguchi, A., D. Rives, and M. Blenner. 2017. “New Kids on the Block: Emerging Oleaginous Yeast of Biotechnological Importance.” AIMS Microbiology 3: 227.
- Yamasaki, S., and P. Anderson. 2008. “Reprogramming mRNA Translation During Stress.” Current Opinion in Cell Biology 20: 222–226.
- Yang, T. J., W.-D. Lin, and W. Schmidt. 2010. “Transcriptional Profiling of the Arabidopsis Iron Deficiency Response Reveals Conserved Transition Metal Homeostasis Networks.” Plant Physiology 152: 2130–2141.
- Zhang, J., X. Du, X. Zhou, D. Jin, J. Miao, and X. Liu. 2021. “An fyve-Domain-Containing Protein, psfp1, Is Involved in Vegetative Growth, Oxidative Stress Response and Virulence of Phytophthora Sojae.” International Journal of Molecular Sciences 22: 6601.
- Zhang, X., F. Zink, F. Hezel, et al. 2020. “Metabolic Substrate Utilization in Stress-Induced Immune Cells.” Intensive Care Medicine Experimental 8: 28.
- Zhang, Y., Y. Li, Y. Zhang, et al. 2016. “Quantitative Proteomics Reveals Membrane Protein-Mediated Hypersaline Sensitivity and Adaptation in Halophilic Nocardiopsis Xinjiangensis.” Journal of Proteome Research 15: 68–85.
- Zhao, X., and F. Bai. 2009. “Mechanisms of Yeast Stress Tolerance and Its Manipulation for Efficient Fuel Ethanol Production.” Journal of Biotechnology 144: 23–30.
- Zhao, Y., T. Ma, and D. Zou. 2021. “Identification of Unique Transcriptomic Signatures and Hub Genes Through RNA Sequencing and Integrated wgcna and ppi Network Analysis in Nonerosive Reflux Disease.” Journal of Inflammation Research 14: 6143–6156.
- Zhu, M., H. Xie, X. Wei, et al. 2019. “Wgcna Analysis of Salt-Responsive Core Transcriptome Identifies Novel Hub Genes in Rice.” Genes 10: 719.
- Zhu, Y., J. Liu, L. Sun, M. Liu, Q. Qi, and J. Hou. 2024. “Development of Genetic Markers in Yarrowia lipolytica.” Applied Microbiology and Biotechnology 108: 14.